We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease

By LabMedica International staff writers
Posted on 11 Apr 2025
Print article
Image: Research has revealed how pathogenic antibodies from six different patients bind to the AChR to cause myasthenia gravis (Photo courtesy of Huanhuan Li/Hibbs Lab, UC San Diego)
Image: Research has revealed how pathogenic antibodies from six different patients bind to the AChR to cause myasthenia gravis (Photo courtesy of Huanhuan Li/Hibbs Lab, UC San Diego)

Myasthenia gravis, an autoimmune disease, leads to muscle weakness that can affect a range of muscles, including those needed for basic actions like blinking, smiling, or moving. Researchers have long understood that the condition arises from miscommunication between the nerves and muscles. The immune system mistakenly generates autoantibodies, which are antibodies that attack the body’s own tissues and proteins. In myasthenia gravis, these autoantibodies specifically target acetylcholine receptors (AChRs), which are crucial for initiating normal muscle contractions. While medications aimed at boosting acetylcholine levels and suppressing the immune system can offer relief, their effectiveness varies, leading researchers to hypothesize that the disease may involve different underlying mechanisms in different individuals.

In a collaborative effort, scientists from UC San Diego (La Jolla, CA, USA) and Yale University (New Haven, CT, USA) employed advanced cryo-electron microscopy (cryo-EM) to examine the structure of human muscle AChRs in great detail. Their findings, published in the journal Cell, focused on analyzing the autoantibodies from six distinct myasthenia gravis patients. They found that these autoantibodies disrupt the normal functioning of AChRs in several ways. Some antibodies block the binding process of acetylcholine, while others activate the immune system’s complement pathway, leading to the destruction of the receptors. Crucially, all the autoantibodies directly impair the receptor’s ability to function as an ion channel. These discoveries challenge prior beliefs about how myasthenia gravis antibodies interfere with receptor activity.

The researchers suggest that future treatments for myasthenia gravis could focus on targeting specific antibody interactions, rather than relying solely on general immunosuppression therapies. To conduct their study, they gathered blood samples from patients and used cell-based functional assays to explore the harmful properties of the autoantibodies. They also performed high-resolution structural studies and electrophysiological experiments to understand how these antibodies interact with and disrupt the function of AChRs. This collaborative research emphasizes the growing importance of personalized medicine and demonstrates how partnerships between institutions can drive breakthroughs that have direct clinical implications.

“By mapping antibody binding sites on the receptor, we revealed a surprising diversity in how autoantibodies contribute to myasthenia gravis. This knowledge helps explain why some patients respond differently to treatments and provides a foundation for developing more personalized therapies,” said Neurobiology Professor Ryan Hibbs, the study’s senior author. “This study not only advances our understanding of myasthenia gravis but also sheds light on other autoimmune diseases in which antibodies attack ion channels, offering hope for more precise and effective treatment strategies.”

Related Links:
UC San Diego
Yale University

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
Total 25-Hydroxyvitamin D₂ & D₃ Assay

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.