We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Model Predicts Patient Outcomes across Multiple Cancer Types

By LabMedica International staff writers
Posted on 07 Dec 2023
Print article
Image: The progression of a tumor can also reflect epigenetics factors that determine the DNA’s structural conformation (Photo courtesy of 123RF)
Image: The progression of a tumor can also reflect epigenetics factors that determine the DNA’s structural conformation (Photo courtesy of 123RF)

In previous research, scientists have examined the impact of mutations in the genes that encode epigenetic factors — elements that influence gene activation or deactivation — on cancer susceptibility. However, understanding the influence of these factors' levels on cancer progression has remained largely unexplored. Addressing this gap, researchers have now developed a groundbreaking artificial intelligence (AI) model based on epigenetic factors that successfully forecasts patient outcomes across various cancer types. It does so by analyzing the gene expression patterns of epigenetic factors within tumors, and categorizing them into distinct groups. This method has been shown to predict patient outcomes more effectively than conventional metrics like cancer grade and stage. Moreover, these insights provide a foundation for future therapies targeting epigenetic factors in cancer treatment, such as histone acetyltransferases and SWI/SNF chromatin remodelers.

Researchers from UCLA Health (Los Angeles, CA, USA) examined the expression patterns of 720 epigenetic factors in tumors from 24 different cancer types. They classified these tumors into unique clusters based on these patterns. Their study revealed that in 10 of these cancer types, the clusters correlated with significant differences in patient outcomes, including progression-free survival, disease-specific survival, and overall survival. This correlation was particularly pronounced in adrenocortical carcinoma, kidney renal clear cell carcinoma, brain lower-grade glioma, liver hepatocellular carcinoma, and lung adenocarcinoma. In these cases, clusters indicating poorer outcomes generally showed higher cancer stages, larger tumor sizes, or more advanced spread.

The researchers then used epigenetic factor gene expression levels to train an AI model, aiming to predict patient outcomes specifically in the five cancer types where survival differences were most significant. The model was able to accurately segregate patients into two groups: those likely to have better outcomes and those facing poorer outcomes. Notably, the genes most critical to the AI model's predictions significantly overlapped with the cluster-defining signature genes.

“Our research helps provide a roadmap for similar AI models that can be generated through publicly-available lists of prognostic epigenetic factors,” said the study’s first author, Michael Cheng, a graduate student in the Bioinformatics Interdepartmental Program at UCLA. “The roadmap demonstrates how to identify certain influential factors in different types of cancer and contains exciting potential for predicting specific targets for cancer treatment.”

Related Links:
UCLA Health 

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Chemistry Analyzer
MS100
New
Cortisol/Cortisone Saliva Controls
MassCheck Chromsystems Saliva Controls

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.