We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Outperforms Expert Pathologists in Predicting Lung Cancer Spread

By LabMedica International staff writers
Posted on 12 Mar 2024
Print article
Image: AI outperformed expert pathologists in predicting which lung cancer cases are likely to metastasize (Photo courtesy of Shutterstock/Kateryna Kon)
Image: AI outperformed expert pathologists in predicting which lung cancer cases are likely to metastasize (Photo courtesy of Shutterstock/Kateryna Kon)

For years, the medical community has been struggling with the challenge of predicting which lung cancer patients are most likely to experience metastasis. This knowledge is crucial for treating early-stage non-small cell lung cancer (NSCLC) patients, as it influences whether they should undergo aggressive treatments like chemotherapy or radiation after lung surgery. Over half of stage I–III NSCLC patients eventually face brain metastasis, but for many others, such intensive treatments are unnecessary. Now, researchers have found that artificial intelligence (AI) could be a promising tool in aiding physicians with these critical decisions.

A groundbreaking pilot study conducted by Caltech (Pasadena, CA, USA) and Washington University School of Medicine in St. Louis (WUSTL, St. Louis, Mo, USA) revealed AI's capability to outperform expert pathologists in predicting the likelihood of cancer metastasis in NSCLC patients. The study involved training a deep-learning network, a sophisticated type of AI program, using hundreds of thousands of image tiles derived from biopsy images of 118 NSCLC patients. These images are typically reviewed by pathologists for cell abnormalities indicating cancer progression. The AI was tested with 40 additional biopsy images to assess its ability to predict brain metastases, demonstrating a striking 87% accuracy, surpassing the 57% accuracy rate of four expert pathologists.

Notably, the AI's predictions were even more accurate for the earliest-stage NSCLC patients (stage I) and were based on standard microscopic slides. The researchers believe that incorporating more data, such as disease severity and biomarkers, could enhance the AI's predictive capabilities. However, the researchers caution that this is just an initial step, and a larger study is necessary to validate these findings. Interestingly, the AI doesn't explicitly reveal the factors influencing its predictions, prompting ongoing research to decode the complex tumor cell features and their environment it might be analyzing. Going forward, Caltech scientists aim to develop improved instrumentation and procedures for collecting uniform, high-quality biopsy images, which could further refine the accuracy of AI predictions in cancer treatment.

"Overtreatment of cancer patients is a big problem," said Changhuei Yang, the Thomas G. Myers Professor of Electrical Engineering, Bioengineering, and Medical Engineering at Caltech. "Our pilot study indicates that AI may be very good at telling us in particular which patients are very unlikely to develop brain cancer metastasis."

"Our study is an indication that AI methods may be able to make meaningful predictions that are specific and sensitive enough to impact patient management," added Richard Cote, head of the Department of Pathology & Immunology at WUSTL.

Related Links:
Caltech
WUSTL

New
Gold Member
Veterinary Hematology Analyzer
Exigo H400
New
Gold Member
Strep Pneumoniae Rapid Test
Strep Pneumoniae (6503 – 6573)
New
Multi-Purpose Centrifuge
GCC-MP
New
Human Cytomegalovirus Test
HCMV Real Time PCR Kit

Print article

Channels

Immunology

view channel
Image: Example image of the high-throughput microscopy method used in the study, showing immune cells stained with different fluorescence markers (Photo courtesy of Felix Kartnig/CeMM, MedUni Vienna)

Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies

Rheumatoid arthritis is the most common inflammatory joint disorder, with women three times as likely to suffer from the condition as men. Treatment advances made over the past decades have led to the... Read more

Microbiology

view channel
Image: RNA sequencing directly from whole blood aims to expand access to LRTI testing (Photo courtesy of CARB-X)

Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood

Pneumonia and lower-respiratory-tract infections (LRTIs) are among the top causes of illness and death globally, particularly in vulnerable populations such as the elderly, young children, and immunocompromised... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.