We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Customizable AI Tool Helps Pathologists Identify Diseased Cells

By LabMedica International staff writers
Posted on 26 Jun 2024
Print article
Image: Green boxes highlight plasma cells — an indicator of infection — in a sample of the tissue lining the uterus (Photo courtesy of Zou lab and Montine lab)
Image: Green boxes highlight plasma cells — an indicator of infection — in a sample of the tissue lining the uterus (Photo courtesy of Zou lab and Montine lab)

Pathologists are tasked with examining body fluids or tissues to diagnose diseases, a process that involves distinguishing rare disease-indicating cells from thousands of normal cells under a microscope. This skill requires extensive training. Artificial intelligence (AI) can assist by learning to differentiate between healthy and diseased cells from digital pathology images. However, traditional AI tools, once trained, lack flexibility. They are designed for specific tasks, such as identifying cancer cells in one organ but not another, and might not align perfectly with a pathologist's specific needs in different scenarios. Now, a collaborative team of computer scientists and physicians has developed a new AI tool that not only identifies diseased cells but also adapts to a pathologist’s requirements.

Developed at Stanford Medicine (Stanford, CA, USA), the tool, named nuclei.io, functions like a human assistant that evolves with feedback. Starting with the basic function of recognizing different cell types by their nuclei, which house genetic material, the tool is designed to improve through interaction. Within an hour of use, nuclei.io can learn to identify the specific cells of interest to a pathologist, enhancing both the speed and accuracy of their work. During its initial trials at Stanford Medicine, the tool demonstrated its ability to speed up and enhance the diagnostic processes, reducing the time and increasing diagnostic accuracy.

In practical tests, where Stanford pathologists used the tool for tasks such as identifying immune cells in uterine biopsies for endometritis or detecting colon cancer cells in lymph nodes, nuclei.io reduced diagnostic times significantly—from 209 seconds to 79 seconds. The AI assistance made the pathologists 62% faster and 72% more accurate in their diagnoses. It is important to note that nuclei.io does not aim to replace the pathologist but rather guide them more efficiently to areas requiring detailed examination. This is part of a broader aim to ensure patients receive rapid and accurate diagnoses. Stanford Medicine pathologists are continuing to evaluate the tool’s effectiveness on a range of diseased cells, showcasing its potential to become a versatile aid in pathology.

“As we face a growing shortage of pathologists, AI tools that work in tandem with doctors have the potential to speed up some of the more tedious, time-consuming parts of our job,” said professor and chair of pathology Thomas Montine, MD, PhD. “One of the strengths of nuclei.io is that it is agnostic to application. This can be a powerful tool for interpreting any biopsy where we are trying to differentiate healthy and malignant cells. That’s not true of any other major AI tool being used in pathology right now.”

Related Links:
Stanford Medicine

Gold Member
Troponin T QC
Troponin T Quality Control
Automated Blood Typing System
IH-500 NEXT
New
Liquid Based Cytology Production Machine
LBP-4032
New
PSA Test
Human Semen Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.