We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Customizable AI Tool Helps Pathologists Identify Diseased Cells

By LabMedica International staff writers
Posted on 26 Jun 2024
Print article
Image: Green boxes highlight plasma cells — an indicator of infection — in a sample of the tissue lining the uterus (Photo courtesy of Zou lab and Montine lab)
Image: Green boxes highlight plasma cells — an indicator of infection — in a sample of the tissue lining the uterus (Photo courtesy of Zou lab and Montine lab)

Pathologists are tasked with examining body fluids or tissues to diagnose diseases, a process that involves distinguishing rare disease-indicating cells from thousands of normal cells under a microscope. This skill requires extensive training. Artificial intelligence (AI) can assist by learning to differentiate between healthy and diseased cells from digital pathology images. However, traditional AI tools, once trained, lack flexibility. They are designed for specific tasks, such as identifying cancer cells in one organ but not another, and might not align perfectly with a pathologist's specific needs in different scenarios. Now, a collaborative team of computer scientists and physicians has developed a new AI tool that not only identifies diseased cells but also adapts to a pathologist’s requirements.

Developed at Stanford Medicine (Stanford, CA, USA), the tool, named nuclei.io, functions like a human assistant that evolves with feedback. Starting with the basic function of recognizing different cell types by their nuclei, which house genetic material, the tool is designed to improve through interaction. Within an hour of use, nuclei.io can learn to identify the specific cells of interest to a pathologist, enhancing both the speed and accuracy of their work. During its initial trials at Stanford Medicine, the tool demonstrated its ability to speed up and enhance the diagnostic processes, reducing the time and increasing diagnostic accuracy.

In practical tests, where Stanford pathologists used the tool for tasks such as identifying immune cells in uterine biopsies for endometritis or detecting colon cancer cells in lymph nodes, nuclei.io reduced diagnostic times significantly—from 209 seconds to 79 seconds. The AI assistance made the pathologists 62% faster and 72% more accurate in their diagnoses. It is important to note that nuclei.io does not aim to replace the pathologist but rather guide them more efficiently to areas requiring detailed examination. This is part of a broader aim to ensure patients receive rapid and accurate diagnoses. Stanford Medicine pathologists are continuing to evaluate the tool’s effectiveness on a range of diseased cells, showcasing its potential to become a versatile aid in pathology.

“As we face a growing shortage of pathologists, AI tools that work in tandem with doctors have the potential to speed up some of the more tedious, time-consuming parts of our job,” said professor and chair of pathology Thomas Montine, MD, PhD. “One of the strengths of nuclei.io is that it is agnostic to application. This can be a powerful tool for interpreting any biopsy where we are trying to differentiate healthy and malignant cells. That’s not true of any other major AI tool being used in pathology right now.”

Related Links:
Stanford Medicine

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
New
Adenovirus Test
S3334E ADV Adenovirus Kit
New
Myocardial Infarction Test
Savvycheck SensA Heart

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.