We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AI Analysis of Immune Cells Predicts Breast Cancer Prognosis

By LabMedica International staff writers
Posted on 20 Nov 2024
Print article
Image: The study findings suggest that tumor-infiltrating lymphocytes are a robust biomarker of breast cancer (Photo courtesy of Shutterstock)
Image: The study findings suggest that tumor-infiltrating lymphocytes are a robust biomarker of breast cancer (Photo courtesy of Shutterstock)

Tumor-infiltrating lymphocytes (TILs) are immune cells crucial in combating cancer. Their presence in a tumor indicates that the immune system is attempting to attack and eliminate cancer cells. TILs can be important indicators in predicting how patients with triple-negative breast cancer will respond to treatment and how the disease might progress. However, assessing these immune cells can yield inconsistent results. Artificial intelligence (AI) has the potential to standardize and automate this process, but proving its effectiveness for healthcare use has been challenging. Now, researchers have explored how different AI models can predict the prognosis of triple-negative breast cancer by analyzing specific immune cells within the tumor. This study, published in eClinicalMedicine, represents a significant step toward incorporating AI into cancer care to enhance patient outcomes.

Researchers at Karolinska Institutet (Stockholm, Sweden) tested ten different AI models to evaluate their ability to analyze tumor-infiltrating lymphocytes in tissue samples from patients with triple-negative breast cancer. The results revealed that the performance of the AI models varied, but eight out of the ten models demonstrated strong prognostic capability, meaning they could predict patient health outcomes with similar accuracy. Even models trained on smaller datasets showed promising results, suggesting that tumor-infiltrating lymphocytes are a reliable biomarker. The study highlights the need for large datasets to compare different AI models and validate their effectiveness before they can be used in clinical practice. Although the findings are promising, further validation is required.

“Our research highlights the importance of independent studies that mimic real clinical practice,” said Balazs Acs, researcher at the Department of Oncology-Pathology, Karolinska Institutet. “Only through such testing can we ensure that AI tools are reliable and effective for clinical use.”

Gold Member
Chagas Disease Test
CHAGAS Cassette
New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
New
Centrifuge
Hematocrit Centrifuge 7511M4
New
Vaginitis Test
Allplex Vaginitis Screening Assay

Print article

Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.