We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Quantum Dot Technology Increases Efficacy of Antibiotics

By LabMedica International staff writers
Posted on 18 Oct 2017
Print article
A team of molecular microbiologists used quantum dot technology to increase the efficacy of antibiotics to the point where they became capable of killing strains of "antibiotic-resistant" organisms.

Quantum dots are minute semiconductor particles, only several nanometers in size, so small that their optical and electronic properties differ from those of larger particles. Many types of quantum dots will emit light of specific frequencies if electricity or light is applied to them, and these frequencies can be precisely tuned by changing the dots' size, shape, and material, giving rise to many applications.

Interest in the potential use of quantum dots to augment antibiotic potency comes from growing concern in the increasing number of multidrug-resistant (MDR) bacteria, an increase that has been exacerbated by the lack of new antibiotics. To treat already pervasive MDR infections, new classes of antibiotics or antibiotic adjuvants are needed. Reactive oxygen species (ROS) have been shown to play a role during antibacterial action; however, it is not yet understood whether ROS contribute directly to or are an outcome of bacterial lethality caused by antibiotics.

In this regard, investigators at the University of Colorado (Boulder, USA) reported in the October 4, 2017, online edition of the journal Science Advances that a light-activated nanoparticle, designed to produce a tunable flux of specific ROS, superoxide, potentiated the activity of antibiotics in clinical MDR isolates of Escherichia coli, Salmonella enterica, and Klebsiella pneumoniae. Despite the high degree of antibiotic resistance in these isolates, the investigators observed a synergistic interaction between both bactericidal and bacteriostatic antibiotics with varied mechanisms of action and the superoxide-producing nanoparticles in more than 75% of combinations. As a result of this potentiation, the dots reduced the effective antibiotic resistance of the clinical isolate infections by a factor of 1,000 without producing adverse side effects.

In addition, the investigators showed that superoxide-generating nanoparticles in combination with the antibiotic ciprofloxacin reduced bacterial load in epithelial cells infected with S. enterica serovar Typhimurium and increased the survival of the roundworm Caenorhabditis elegans upon infection with S. enterica serovar Enteriditis, compared to antibiotic alone.

“We are thinking more like the bug,” said senior author Dr. Anushree Chatterjee, assistant professor of chemical and biological engineering at the University of California. “This is a novel strategy that plays against the infection’s normal strength and catalyzes the antibiotic instead. Overall, the most important advantage of the quantum dot technology is that it offers clinicians an adaptable multifaceted approach to fighting infections that are already straining the limits of current treatments. Disease works much faster than we do. Medicine needs to evolve as well.”

Related Links:
University of Colorado

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Rocking Shaker
HumaRock
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.