We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Researchers Develop New Tool That Reads Live Brain Activity

By LabMedica International staff writers
Posted on 06 Mar 2013
Scientists have developed a system for observing real-time mammalian brain activity, providing a valuable new tool for studying basic brain processes and neurological medical problems and treatments, including neurodegenerative diseases such as Alzheimer's.

Using a green fluorescent protein (GFP) expression marker and a microscope implanted in the brain, scientists at Standford University (Standford, CA, USA) have demonstrated a technique for observing in real-time the activity of hundreds of neurons in the brain of a live mouse. More...
The researchers caused the neurons to express GFP from a vector engineered to be sensitive to calcium ions, which enter and flood neuron cells upon firing (activation) - the intracellular rise in calcium thereby causes the entire cell fluoresces. A tiny microscope implanted just above the hippocampus (critical for spatial and episodic memory) captures the light from roughly 700 neurons. A camera chip connected to the microscope sends a digital image to a computer screen, enabling the near real-time video observation of brain activity as the mouse runs around a small, enclosed “arena.” The scientists have deciphered clear patterns of neuron firings from what to others may appear to be a chaos of random firings.

"We can literally figure out where the mouse is in the arena by looking at these lights," said senior auther Mark Schnitzer, associate professor of biology and of applied physics at Stanford. When a mouse is scratching at the wall in one area of the arena, a specific neuron will fire and flash green. When the mouse scampers to a different area, the fluorescence from the first neuron fades while a different cell sparks. "The hippocampus is very sensitive to where the animal is in its environment, and different cells respond to different parts of the arena," said Prof. Schnitzer; "This is how your brain makes a representative map of a space."

The brain activity observed in this initial application of the technique has also been linked to long-term information storage. The team found that the neurons fired in the same patterns even after a month. "The ability to come back and observe the same cells is very important for studying progressive brain diseases," said Prof. Schnitzer. For example, if a particular neuron in a test mouse stops functioning, as a result of normal neuronal death or of a neurodegenerative disease, researchers could apply an experimental therapeutic agent and then expose the mouse to the same stimuli to see if the function returns. Although the technology cannot be used on humans, since mouse models are a common starting point for new therapies for human neurodegenerative diseases, Prof. Schnitzer notes that the system could be a very useful tool in evaluating preclinical research (the researchers have formed a company to manufacture the device).

The work was published February 10, 2013, in the online edition of the journal Nature Neuroscience.

Related Links:

Standford University



New
Gold Member
Latex Test
SLE-Latex Test
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Chlamydia Trachomatis Test
Aptima Chlamydia Trachomatis Assay
New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: Combining rapid diagnostic tests with conventional serology proves to be a useful strategy for diagnosing Chagas disease (Courtesy of Adobe Stock)

Rapid Tests for Chagas Disease Improves Diagnostic Access

Chagas disease, caused by the parasite Trypanosoma cruzi, affects between six and seven million people across the Americas. It is primarily transmitted by insect vectors and remains largely underdiagnosed,... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: How the predictive test works (Photo courtesy of QMUL)

World’s First Clinical Test Predicts Best Rheumatoid Arthritis Treatment

Rheumatoid arthritis (RA) is a chronic condition affecting 1 in 100 people in the UK today, causing the immune system to attack its joints. Unlike osteoarthritis, which is caused by wear and tear, RA can... Read more

Pathology

view channel
Image: A tool uses artificial intelligence and high-resolution imaging to track senescent cells (Courtesy of Adobe Stock)

AI-Assisted Technique Tracks Cells Damaged from Injury, Aging and Disease

Senescent cells, which stop growing and reproducing due to injury, aging, or disease, play a critical role in wound repair and aging-related diseases like cancer and heart disease. These cells, however,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.