We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Light-AI Cancer Diagnosis Technology Could Eliminate Need for Traditional Blood Draws and Biopsies

By LabMedica International staff writers
Posted on 21 Oct 2024
Print article
Image: Schematic illustration of the 3D-PHP sensor integrated with saliva collection tube for applications in human saliva sensing and lung cancer diagnosis (Photo courtesy of KIMS)
Image: Schematic illustration of the 3D-PHP sensor integrated with saliva collection tube for applications in human saliva sensing and lung cancer diagnosis (Photo courtesy of KIMS)

Numerous accounts exist of dogs barking at their owners so much that the owners suspected something was wrong, prompting them to visit a doctor and ultimately receive a cancer diagnosis. This phenomenon occurs because dogs possess an acute sense of smell, enabling them to detect metabolites, including volatile organic compounds (VOCs), present in human body fluids. Researchers are now working to apply these principles in developing a cancer diagnostic sensor.

A research team from the Advanced Bio and Healthcare Materials Research Division at the Korea Institute of Materials Science (KIMS, Changwon, South Korea) has created an innovative sensor material that enhances the optical signals of cancer metabolites found in body fluids (such as saliva, mucus, and urine) and utilizes artificial intelligence (AI) for cancer diagnosis. This technology allows for the quick and sensitive detection of metabolites and alterations in the body fluids of cancer patients, offering a non-invasive alternative to traditional blood draws or biopsies. The team successfully diagnosed colorectal cancer by using a plasmonic needle that amplifies the Raman signals of molecules. This needle is inserted through a 1-millimeter hole compatible with a colonoscopy camera, enabling the swabbing of the tumor's surface for composition analysis without causing bleeding.

Additionally, the researchers developed a method to collect saliva from lung cancer patients and categorize the cancer stage. The breath of individuals with lung cancer contains VOCs that differ from those found in healthy people. These compounds dissolve in saliva and are identified as lung cancer metabolites. The team has perfected a technology that employs paper-based sensors to differentiate between healthy individuals and lung cancer patients while also staging lung cancer using AI. This technology can detect signals from metabolites in body fluids with high sensitivity, utilizing plasmonic materials that enhance Raman signals by more than 100 million times, all without relying on traditional, complex, and costly equipment. AI analysis and mathematical modeling were employed to propose biomarkers for diagnosis.

Last year, the research team also developed a cancer diagnosis technology using urine. This year, they have advanced this technology to simultaneously detect multiple cancers in urine samples. The team analyzed urine from approximately 250 patients diagnosed with pancreatic cancer, prostate cancer, lung cancer, and colorectal cancer. They were able to conduct rapid analyses and utilize AI to determine results for 100 patients within about two hours. The research team reported achieving clinical sensitivity and specificity exceeding 98%. The findings of this study were published in two papers in the journal Biosensors and Bioelectronics, as well as in an article in Sensors and Actuators B-Chemical.

“The developed technology can be expanded not only to diagnose cancer, but also to diseases with poorly understood diagnostics, such as synaptic diseases,” said Dr. Ho Sang Jung from KIMS who is leading the research team. “We will enter the global diagnostic market based on domestic source technologies and take the lead in developing technologies that people can experience.”

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Hematology Analyzer
XS-500i
New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0

Print article

Channels

Molecular Diagnostics

view channel
Image: This joint effort will use samples from KU ADRC research to validate a blood test developed by BYU (Photo courtesy of KU ADRC)

Blood Test for Early Alzheimer’s Detection Could Help Slow Disease Progression

When brain cells, such as those affected by Alzheimer’s disease, die, small fragments of DNA are released into the bloodstream. These fragments, known as cell-free DNA, carry valuable information, including... Read more

Hematology

view channel
Image: Personalized blood count could lead to early intervention for common diseases (Photo courtesy of 123RF)

Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals

A complete blood count (CBC) screening is a standard examination most physicians request for healthy adults. This test is essential for evaluating a patient’s overall health with a single blood sample.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more

Pathology

view channel
Image: These images show the high resolution achieved with the new microscopy technique (Photo courtesy of Cao, R. et al. Science Advance, 2024. Caltech)

New Microscopy Technique Enables Rapid Tumor Analysis by Surgeons in OR

The current standard method for quickly sampling and imaging tissue during surgery involves taking a biopsy, freezing the sample, staining it to enhance visibility, and slicing it into thin sections that... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.