We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Molecular Assay Diagnoses Eight Gastrointestinal Parasites

By LabMedica International staff writers
Posted on 19 Aug 2013
A novel, rapid, high-throughput quantitative multiparallel real-time polymerase chain reaction (qPCR) platform has been developed for the diagnosis of gastrointestinal parasites.

The diagnosis of gastrointestinal parasites has traditionally relied on stool microscopy, which has low diagnostic sensitivity and specificity as the ability of the microscopist to detect parasites is directly related to the number of organisms in the stool.

Helminthologists at the US National Institutes of Health (Bethesda, MD, USA) working with others, collected fecal samples from 400 asymptomatic children, 13 months of age, living in, Ecuador. The children were part of a larger ongoing birth cohort study in which direct microscopy and the Kato-Katz method were performed at the time of stool collection. A second group of 125 asymptomatic children eight to 14 years of age also had fecal samples collected as part of a separate study of anthelmintic treatment.

Species-specific primers/probes were used for eight common gastrointestinal parasite pathogens: Ascaris lumbricoides, Necator americanus, Ancylostoma duodenale, Giardia lamblia, Cryptosporidium spp., Entamoeba histolytica, Trichuris trichiura, and Strongyloides stercoralis. All qPCRs were conducted in 96-well MicroAmp optical plates (Applied Biosystems; Foster City, CA, USA) and the samples were run on Applied Biosystem’s ABI 7900HT Fast Real-Time PCR System and compared with a standard direct wet mount slide for stool microscopy.

The qPCR showed higher detection rates for all parasites compared with direct microscopy. For example, the molecular assay identified Ascaris in 28 of 400 (7.0%) of positive samples whereas direct smears identified 22 of 400 (5.5%) positive samples. The difference between qPCR and microscopy was seen even more dramatically for G. lamblia with 103 additional positive samples for this parasite with 126 of 400 (31.5%) with qPCR versus 23 of 400 (5.8%) by microscopy. The qPCR was able to distinguish between patients without parasites and those with polyparasitism more accurately and with greater detection rates than direct smear microscopy.

The authors concluded that the high throughput system that has been field tested in a resource-limited area provides a sensitive and specific approach to gastrointestinal parasitism and polyparasitism, with broad implications for community based therapies and methods for assessing efficacy of treatment. The study was published in the August 2013 edition of the American Journal of Tropical Medicine and Hygiene.

Related Links:

US National Institutes of Health
Applied Biosystems



Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunofluorescence Analyzer
MPQuanti
New
Myeloperoxidase Assay
IDK MPO ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.