We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Panel of Genetic Biomarkers Separates Brain Tumors into Five Distinct Classes

By LabMedica International staff writers
Posted on 21 Jun 2015
A panel of three genetic biomarkers has been identified that can differentiate brain tumors (gliomas) into five principal groups.

Currently, malignant gliomas are classified based on the appearance of biopsy samples under the microscope, and their grade is assigned according to degree of aggressiveness, with grade II being the least aggressive and grade IV the most.

Investigators at the University of California, San Francisco (USA) and the Mayo Clinic (Rochester, MN, USA) now offer a more precise mechanism for glioma classification. They found that a panel of three biomarker mutations could separate 95% of gliomas into one of five distinct groups. The biomarkers are (1) mutations in the TERT (telomerase reverse transcriptase) promoter gene, (2) mutations in the IDH (isocitrate dehydrogenase) gene, or (3) co-deletion of chromosome arms 1p and 19q (1p/19q co-deletion).

Telomerase is a ribonucleoprotein polymerase that maintains telomere ends by addition of the telomere repeat TTAGGG. The TERT (telomerase reverse transcriptase) enzyme consists of a protein component with reverse transcriptase activity and an RNA component, which serves as a template for the telomere repeat. Deregulation of telomerase expression in somatic cells may be involved in their transformation into cancer cells. Studies in mice suggest that telomerase also participates in chromosomal repair, since de novo synthesis of telomere repeats may occur at double-stranded breaks.

Specific mutations in the isocitrate dehydrogenase gene (IDH1) have been found in several brain tumors including astrocytoma, oligodendroglioma, and glioblastoma multiforme, with mutations found in nearly all cases of secondary glioblastomas, which develop from lower-grade gliomas, but rarely in primary high-grade glioblastoma multiforme. Patients whose tumor had an IDH1 mutation had longer survival.

In the current study, the investigators analyzed genetic and clinical data from 1,087 malignant glioma patients and 11,590 healthy controls. They found that among grade II and III tumors, 29% were “triple positive,” showing all three markers. Patients with these tumors had a median survival time of 13.1 years. About 5% of patients had tumors with both TERT and IDH mutations, and had a median survival time similar to the triple positive patients. Nearly 45% of patients had tumors with only the IDH mutation and had a median survival time of 8.9 years. Approximately 7% of patients had triple negative tumors with none of the mutations, and these individuals had a median survival time of 6.2 years. The approximately 10% of patients whose tumors had only the TERT mutation were associated with the shortest median survival time – 1.9 years.

“Unfortunately, classifying a tumor only by appearance and grade has not provided sufficient information about the way the tumor is likely to behave, how it will respond to treatment or the patient’s likely survival time,” said contributing author Dr. Margaret R. Wrensch, professor of neurological surgery, epidemiology, and biostatistics at the University of California, San Francisco. “These markers will potentially allow us to predict the course of gliomas more accurately, treat them more effectively, and identify more clearly what causes them in the first place.”

A paper describing the new classification protocol was published in the June 10, 2015, online edition of the New England Journal of Medicine (NEJM).

Related Links:
University of California, San Francisco
Mayo Clinic



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
Total 25-Hydroxyvitamin D₂ & D₃ Assay
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.