We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Handheld Mass Spectrometer Identifies Cancer Tissue in Seconds

By LabMedica International staff writers
Posted on 19 Sep 2017
A team of scientists and engineers has invented a powerful device that rapidly identifies living cancerous tissue, giving surgeons precise diagnostic information about what tissue to cut or preserve.

“If you talk to cancer patients after surgery, one of the first things many will say is ‘I hope the surgeon got all the cancer out’,” said Livia Schiavinato Eberlin, assistant professor at University of Texas at Austin (Austin, TX, USA) who designed the study and led the team, “our technology could vastly improve the odds that surgeons really do remove every last trace of cancer during surgery.”

The current method, Frozen Section Analysis, for diagnosis and determining the boundary between cancer and normal tissue during surgery is slow and sometimes inaccurate. Each sample can take 30 minutes or more to prepare and interpret by a pathologist, increasing risk to the patient of infection and negative effects of anesthesia. For some types of cancers frozen section interpretation can be difficult, often yielding unreliable results.

The new MasSpec Pen took about 10 seconds to provide a diagnosis and was over 96% accurate in tests on tissues removed from 253 human cancer patients. It also detected cancer in marginal regions between normal and cancer tissues that presented mixed cellular composition.

This technology also offers the patient a safer surgery. “It allows us to be much more precise in what tissue we remove and what we leave behind,” said project collaborator James Suliburk, of Baylor College of Medicine. Although maximizing cancer removal is critical, removing too much healthy tissue can also have profound negative consequences: For example, breast cancer patients could experience higher risk of painful side effects and nerve damage, in addition to aesthetic impacts. Thyroid cancer patients could lose speech ability or the ability to regulate the body’s calcium levels in ways important for muscle and nerve function.

Living cells produce metabolites and each type of cancer produces a unique set of metabolites and other biomarkers. “Because the metabolites in cancer and normal cells are so different, we extract and analyze them with the MasSpec Pen to obtain a molecular fingerprint of the tissue. What is incredible is that through this simple and gentle chemical process, the MasSpec Pen rapidly provides diagnostic molecular information without causing tissue damage,” said Prof. Eberlin.

The molecular fingerprint obtained by the MasSpec Pen from an uncharacterized tissue sample is instantaneously evaluated by a “statistical classifier” software trained on a database of molecular fingerprints that Prof. Eberlin and her colleagues gathered from the 253 human tissue samples. The samples included both normal and cancerous tissues of the breast, lung, thyroid, and ovary.

The pen releases a drop of water onto the tissue, and small molecules migrate into the water. The water sample is driven into a mass spectrometer, which detects thousands of molecules as a molecular fingerprint. The disposable device requires simply holding the pen against the patient’s tissue, triggering the automated analysis using a foot pedal, and waiting a few seconds for a result.

In tests performed on human samples, the device was more than 96% accurate for cancer diagnosis. It also diagnosed cancer in live, tumor-bearing mice during surgery without causing observable tissue harm or stress to the animals.

So the process would be low-impact for patients and biocompatible. “When designing the MasSpec Pen, we made sure the tissue remains intact by coming into contact only with water and the plastic tip of the MasSpec Pen during the procedure,” said Prof. Zhang.

The study, by Zhang J et al, was published September 6, 2017, in the journal Science Translational Medicine.

Related Links:
University of Texas at Austin


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.