We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




DNA Code Unraveled for Rare Neurologic Disease

By LabMedica International staff writers
Posted on 04 Jul 2018
Neuromyelitis optica (NMO) is a potentially fatal disease in which the immune system attacks cells in the optic nerve and spinal cord, leaving some patients blind and/or paralyzed.

Patients can recover most of their function through medications and physical rehabilitation, though many are misdiagnosed with multiple sclerosis and face a higher risk of relapse and permanent damage due to lack of proper therapy.

A team of scientists from various institution and led by those at the Broad Institute (Cambridge, MA, USA) used genetic data from more than 1,200 participants which may help scientists improve treatments of neuromyelitis optica (NMO). The team meta-analyzed whole-genome sequences from 86 NMO cases and 460 controls with genome-wide single nucleotide polymorphism (SNP) array from 129 NMO cases and 784 controls to test for association with SNPs and copy number variation (total 215 NMO cases, 1,244 controls).

The investigators determined anti-aquaporin 4 (AQP4) serostatus via standardized assays, including enzyme-linked immunosorbent assay (ELISA) or cell-based assay (CBA). ELISA-based detection was obtained from one of the numerous laboratories that offer the test. CBAs were obtained from the Mayo Clinic Laboratories (Rochester, MN, USA). The team also obtained DNA from 144 NMO cases (78 NMO-immunoglobulin G (IgG)+ / 68 NMO-IgG−). Sequence reads were processed and aligned to a reference genome. Other techniques were used to support the study.

The team identified two independent signals in the major histocompatibility complex (MHC) region associated with NMO-IgG+, one of which may be explained by structural variation in the complement component four genes. Mendelian Randomization analysis revealed a significant causal effect of known systemic lupus erythematosus (SLE), but not multiple sclerosis (MS), risk variants in NMO-IgG+.

Benjamin Greenberg, MD, a neurologist and a senior author of the study, said, “This outcome shows that doing in-depth studies pays off, and more studies like this may be needed to find the problem behind other rare conditions. By taking a rare disease and doing more than just reading every third or fourth page of genetic code, we have modeled NMO in a much more accurate way.” The study was published on May 16, 2018, in the journal Nature Communications.

Related Links:
Broad Institute
Mayo Clinic Laboratories


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
New
Multi-Function Pipetting Platform
apricot PP5
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.