Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Integrated Analyses Offer Molecular Insights to Tumor Subtypes

By LabMedica International staff writers
Posted on 19 Jul 2018
The most common malignancy of young adult males of European descent are testicular germ cell tumors (TGCTs) of the type derived from germ cell neoplasia in situ (GCNIS). There are two major histologic types: pure classic seminoma and nonseminomatous germ cell tumors (NSGCTs).

Seminoma often has more indolent behavior, while NSGCT tends to occur at younger ages and confer higher mortality. TGCTs are now highly treatable, and overall relative survival of men with TGCTs exceeds 95%; however, survivors can experience devastating late effects of treatment.

An extensive team of scientists collaborating with those at University of North Carolina at Chapel Hill (Chapel Hill, NC, USA) studied 137 primary testicular germ cell tumors (TGCTs) using high-dimensional assays of genomic, epigenomic, transcriptomic, and proteomic features. The median age of diagnosis was 31 years, with a range of 14 to 67. Patient tumor histology was classified according to a consensus of expert pathologists. Molecular and genomic data were collected using reverse phase protein arrays (RPPAs), whole-exome DNA sequencing, RNA-seq, miRNA sequencing, DNA methylation arrays, and SNP arrays for copy number analysis.

The team reported that as expected, the 72 seminomas in this set clustered apart from the non-seminomatous tumors, based on these molecular data. They saw relatively limited mutation frequencies across most of the histological subtypes. Just three genes, KIT, KRAS, and NRAS, were significantly mutated in the TGCTs, and those recurrent mutations were limited to the seminoma subtype. Within seminomas, DNA methylation and immune infiltration differences also tended to coincide with the presence or absence of KIT gene mutations. Still other mutation frequency, ploidy, DNA methylation, and/or miRNA expression shifts corresponded with the remaining non-seminomatous subtypes.

In teratoma and yolk sac tumors, the group saw enhanced expression of a miRNA called miR-375 that is typically found at low levels in blood samples from healthy individuals. On the other hand, the embyronal carcinomas had higher-than-usual expression of miR-19 and other miRNAs, they noted, and were marked by DNA methylation at non-canonical cytosine sites.

The authors concluded the new TGCT molecular profiles afforded a more complete view of previously articulated hypotheses, provide additional insights into mechanisms of TGCT tumorigenesis, and identify possible new approaches to the treatment of TGCTs. Katherine Hoadley, PhD, is an assistant professor in Cancer Genetics and senior author of the study, said, “Integration of tumor characteristics and genomic and epigenomics data revealed distinctive molecular landscapes of TGCT histologic types, and identified previously unappreciated diversity within seminomas.” The study was published on June 12, 2018, in the journal Cell Reports.

Related Links:
University of North Carolina at Chapel Hill


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.