We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Multidrug-Resistant TB Outbreak Undetected by Standard Tests

By LabMedica International staff writers
Posted on 31 Oct 2018
Rapid diagnosis of Mycobacterium tuberculosis resistant to anti-tuberculosis drugs is essential to prevent further acquisition of drug resistance, high morbidity and mortality, and unabated transmission of resistant strains.

Fast detection of resistance to rifampicin, the most important anti-tuberculosis drug, is especially crucial because it is predictive of multidrug resistance, defined as resistance to at least isoniazid and rifampicin. Global rollout of rapid molecular assays is revolutionizing the diagnosis of rifampicin resistance, predictive of multidrug-resistance, in tuberculosis.

A large international team of scientists working with the Katholieke Universiteit Leuven (Leuven, Belgium) screened records of 37,644 Mycobacterium tuberculosis positive cultures from four South African provinces, to identify isolates with rifampicin sensitivity and isoniazid resistance according to Xpert MTB/RIF, GenoType MTBDRplus, and BACTEC MGIT 960.

Of 1,823 isolates that met these criteria, 277 were randomly selected and screened for Ile491Phe with multiplex allele-specific PCR and Sanger sequencing of rpoB. Ile491Phe-positive strains (as well as 17 Ile491Phe-bearing isolates from another study) were then tested by Deeplex-MycTB deep sequencing (Genoscreen, Lille, France; www.genoscreen.fr) and whole-genome sequencing to evaluate their patterns of extensive resistance, transmission, and evolution. The Genoscreen test analyses a wide panel of target genes in the bacteria and can identify resistance to over a dozen antibiotics simultaneously.

The team identified Ile491Phe in 37 (15%) of 249 samples with valid multiplex allele-specific PCR and sequencing results, thus reclassifying them as multi-drug resistant (MDR). All 37 isolates were additionally identified as genotypically resistant to all first-line drugs by Deeplex-MycTB. Six of the South African isolates harbored four distinct mutations potentially associated with decreased bedaquiline sensitivity. Consistent with Deeplex-MycTB genotypic profiles, whole-genome sequencing revealed concurrent silent spread in South Africa of a MDR tuberculosis strain lineage extending from the original outbreak and at least another independently emerged Ile491Phe-bearing lineage.

The authors concluded that a substantial number of MDR tuberculosis cases harboring the Ile491Phe mutation in the rpoB gene in South Africa are missed by current diagnostic strategies, resulting in ineffective first-line treatment, continued amplification of drug resistance, and concurrent silent spread in the community. The study was published on October 17, 2018, in the journal The Lancet Infectious Diseases.

Related Links:
Katholieke Universiteit Leuven


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Troponin I Test
Quidel Triage Troponin I Test
New
Respiratory Bacterial Panel
Real Respiratory Bacterial Panel 2
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The research team has developed the uCR-Chip device to enhance kidney function testing (Photo courtesy of University of Manitoba)

Low-Cost Portable Screening Test to Transform Kidney Disease Detection

Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.