Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood-based Liquid Biopsy Test Accurately Detects More Than Fifty Types of Cancer

By LabMedica International staff writers
Posted on 05 Jul 2021
Results from a clinical study confirmed that a noninvasive liquid biopsy-based blood test could accurately detect more than 50 types of cancer and could be used as a multi-cancer screening test among individuals at higher risk of the disease, including asymptomatic individuals aged 50 years or older.

The Circulating Cell-free Genome Atlas study (CCGA) was a prospective, case-controlled, observational study and demonstrated that a blood-based multi-cancer early detection (MCED) test utilizing cell-free DNA (cfDNA) sequencing in combination with machine learning could detect cancer signals across multiple cancer types and predict cancer signal origin (CSO) with high accuracy.

Liquid biopsy analysis of circulating cfDNA from peripheral blood has emerged as a valuable diagnostic tool in oncology, since sample collection is quick and minimally invasive. In cancer patients, cfDNA consists in part of cancer-derived circulating tumor DNA (ctDNA), and it has been shown that tumor-related genetic and epigenetic alterations can be detected by analyzing cfDNA in cancer patients. As a consequence, cfDNA analysis holds great promise for precision oncology and personalized therapies, and is currently being evaluated in a broad range of clinical studies.

The CCGA study was designed to develop and validate an MCED test to detect cancer signals across multiple cancer types and predict CSO via a single blood draw. Modeled data from this test have shown that its use in the general population could shift cancer detection from stage IV to earlier stages (stages I-III), potentially reducing cancer mortality. CCGA was divided into three studies; in the first, a comprehensive comparison of genomic sequencing approaches identified that whole-genome bisulfite sequencing (WGBS; detecting genome-wide DNA methylation status) outperformed other methods. In the second study, the selected WGBS assay was refined into a targeted methylation assay, and machine learning classifiers for cancer detection and CSO prediction were developed.

The objective of this third and final CCGA study was to validate an MCED test version further refined for use as a screening tool. To this end the GRAIL, Inc. (Menlo Park, CA, USA) Galleri MCED test was used to evaluate 4077 participants (2823 with cancer and 1254 normal controls),

Results revealed that the MCED test detected cancer signals from more than 50 different types of cancer and found that across all four cancer stages (I, II, III, IV), the test correctly identified when cancer was present (the sensitivity or true positive rate) in 51.5% of cases. The test's specificity (the true negative rate) was 99.5%, meaning that the test wrongly detected cancer (the false positive rate) in only 0.5% of cases. For all cancers, detection improved with each cancer stage with a sensitivity rate of 16.8% at the early stage I, 40.4% at stage II, 77% at stage III and 90.1% at stage IV - the most advanced stage when symptoms are often showing. In addition, the multi-cancer early detection test correctly identified the tissue in which the cancer was located in the body in 88.7% of cases.

First author, Dr Eric Klein, chairman of the Glickman Urological and Kidney Institute at the Cleveland Clinic (OH, USA), said, "Finding cancer early, when treatment is more likely to be successful, is one of the most significant opportunities we have to reduce the burden of cancer. These data suggest that, if used alongside existing screening tests, the multi-cancer detection test could have a profound impact on how cancer is detected and, ultimately, on public health. We believe that cancers that shed more cfDNA into the bloodstream are detected more easily. These cancers are also more likely to be lethal, and prior research shows that this multi-cancer early detection test more strongly detects these cancer types. Cancers such as prostate shed less DNA than other tumors, which is why existing screening tests are still important for these cancers."

The third CCGA study was published in the June 24, 2021, online edition of the journal Annals of Oncology.

Related Links:
GRAIL, Inc.
Cleveland Clinic



Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory Bacterial Panel
Real Respiratory Bacterial Panel 2
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.