We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

SEBIA

Sebia provides clinical protein electrophoresis equipment and reagents for in-vitro diagnostic testing, including sys... read more Featured Products: More products

Download Mobile App




DNA Testing Assessed in Childhood Sickle-Cell Anemia Diagnosis

By LabMedica International staff writers
Posted on 21 Jul 2022

Sickle-cell disease (SCD) is the most common genetic disorder worldwide. SCD patients are homozygous for a recurrent mutation in the HBB-gene resulting in the substitution of a glutamic acid residue with a valine amino acid at position 6 of the beta globin protein (E6V).

The mutated protein, known as HbS, has a different electrical charge, which is exploited for the distinction of HbS from HbA by electrophoresis. The term SCD refers to all different genotypes that cause characteristic clinical syndrome, whereas sickle-cell anemia (SCA), the most prevalent form of SCD, refers to the homozygous form of SS, and the heterozygous compound forms such as S/β-thalassemia, SC disease refer to SCD.

Molecular Geneticists at the KU Leuven and University Hospitals Leuven (Leuven, Belgium) collaborating with their colleagues at the University of Kinshasa (Kinshasa, Democratic Republic of Congo) conducted a cross-sectional study from November 2016 to end October 2017 and 160 patients were included. The diagnosis in these patients was made by clinical suspicion associated with a positive Emmel test, occasionally people received hemoglobin electrophoresis and/or hemoglobin isoelectrofocusing.

For each patient, the team collected blood in two 4 mL EDTA tubes. They obtained a full blood cells count (red blood cells (RBC), white blood cells (WBC), platelets and reticulocytes). Biochemical analyses included lactate dehydrogenase (LDH), bilirubin, serum creatinine, aspartate aminotransferase (AST), and alanine aminotransferase (ALT). Hemoglobin electrophoresis was performed using the automated Minicap (Sebia, Norcross, GA, USA). DNA was extracted by the salting out method, and mutation analysis for the SCA mutation (E6V) was performed. Mutation analysis of the β-globin gene was accomplished by resequencing the coding exons and by Multiplex Ligation-dependent Probe Amplification (MLPA), in patients suspected for compound form of SCD Sβ-thalassemia.

The investigators reported that hemoglobin capillary electrophoresis suggested that 136 (85%) were homozygote SS, 13 (8.1%) were heterozygote (AS), and 11 (6.9%) were homozygote normal (AA). DNA testing confirmed these electrophoresis findings, with the exception of four patients, two AS in electrophoresis were found SS due to recent transfusion, and two SS in electrophoresis were found AS because they have compound heterozygous form S/β 0-thalassemia. The diagnosis of SCA was therefore wrongly ascertained with Emmel test in 15% of patients.

The authors concluded that their study revealed a high proportion of wrongly diagnosed SCA patients in a rural environment in Central Africa, and underlines the importance of a DNA test in addition to Hb electrophoresis in helping to clarify the diagnosis of SCA. Improving the skills of healthcare professionals in the clinical recognition of SCA in children remains a crucial step in the management of SCA, especially in rural area. The study was published on July 12, 2022 in the Journal of Clinical Laboratory Analysis.


New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Piezoelectric Micropump
Disc Pump
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.