We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Advancements Enable Leap into 3D Pathology

By LabMedica International staff writers
Posted on 10 May 2024

Human tissue is complex, intricate, and naturally three-dimensional. However, the thin two-dimensional tissue slices commonly used by pathologists to diagnose diseases provide only a limited view of the tissue's full complexity. As a result, there is a growing trend in pathology towards the examination of tissue in its three-dimensional form. Unfortunately, 3D pathology datasets can contain vastly more data than their 2D counterparts, rendering manual analysis impractical. Now, researchers have developed new, deep-learning models capable of utilizing 3D pathology datasets to predict clinical outcomes.

Tripath, developed by researchers from Mass General Brigham (Somerville, MA, USA) and their collaborators, aims to bridge the computational challenges of processing 3D tissue and predicting outcomes based on 3D morphological features. In their study, the team utilized two 3D high-resolution imaging techniques to capture images of curated prostate cancer specimens. These models were trained to assess the risk of prostate cancer recurrence using volumetric human tissue biopsies.

Tripath has demonstrated superior performance compared to traditional pathologists and has outperformed existing deep learning models that rely on 2D morphology and thin tissue slices, by comprehensively capturing 3D morphologies from the entire tissue volume. While further validation in larger datasets is necessary before this innovative approach can advance to clinical application, the research team remains optimistic about its potential to enhance clinical decision-making.

“Our approach underscores the importance of comprehensively analyzing the whole volume of a tissue sample for accurate patient risk prediction, which is the hallmark of the models we developed and only possible with the 3D pathology paradigm,” said lead author Andrew H. Song, PhD, of the Division of Computational Pathology in the Department of Pathology at Mass General Brigham.

Related Links:
Mass General Brigham

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: BIOTIA-ID is an NGS platform that accurately and sensitively diagnoses infectious disease-causing pathogens (Photo courtesy of Adobe Stock)

New Collaboration to Advance Microbial Identification for Infectious Disease Diagnostics

With the rise of global pandemics, antimicrobial resistance, and emerging pathogens, healthcare systems worldwide are increasingly dependent on advanced diagnostic tools to guide clinical decisions.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.