Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Automated Diagnostic Techniques to Improve Diagnosis of Inflammatory Diseases

By LabMedica International staff writers
Posted on 25 Jun 2024

Necroptosis, a type of cell death, is a natural mechanism through which the body eliminates unwanted or dangerous cells. This process can malfunction in some individuals, leading to diseases characterized by inflammation, commonly impacting the gut, skin, and lungs. Until now, identifying cells undergoing necroptosis in practical settings was challenging. Now, advancements in fully automated diagnostic technology, including liquid handling robots, promise significant improvements for millions of people across the world suffering from inflammatory diseases.

Researchers at the Walter and Eliza Hall Institute of Medical Research (WEHI, Victoria, Australia) have made breakthroughs in detecting necroptosis, which plays a crucial role in various inflammatory conditions such as psoriasis, arthritis, and inflammatory bowel disease. They describe their findings as an "atlas of necroptosis," mapping out cells in the body prone to necroptosis. The research involved refining over 300 different experimental setups to develop a robust set of robotic methods that accurately identify necroptosis in patients with ulcerative colitis or Crohn’s disease. These insights are vital for understanding how necroptosis contributes to different inflammatory disorders and indicate that the condition is triggered by factors like inflammation, bacterial shifts, or immune disturbances.

These discoveries are vital for enhancing the diagnosis of necroptosis, potentially leading to improved and personalized treatments for numerous inflammatory ailments. A key aim of this research was to devise a replicable solution applicable in both lab and clinical environments. The methodologies established provide reproducible techniques that hospitals worldwide can adopt, offering new avenues for treating inflammatory diseases. This development of automated methods to detect necroptosis is just the start, as the researchers intend to apply their methods to study other gastrointestinal disorders such as celiac disease and various inflammatory conditions affecting the skin, lungs, and kidneys.

“We can now confidently visualize where and when necroptotic cell death can happen in the body,” said study co-leader and WEHI Inflammation division head, Professor James Murphy. "Most importantly, researchers and clinicians around the world will now be able to use these new methods, especially as liquid handling robots for immunostaining are common in hospitals and pathology departments worldwide. The next phase is to use these robotic methods to advance our understanding of which diseases could benefit from medicines that block necroptosis."

Related Links:
WEHI

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Auto Clinical Chemistry Analyzer
cobas c 703
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.