We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Groundbreaking Genomics Method to Improve Early Detection of Genetic Diseases

By LabMedica International staff writers
Posted on 02 Dec 2024

Researchers using next-generation sequencing are uncovering valuable insights from the non-coding segments of human DNA, which were once considered "junk DNA." These segments, called non-coding RNAs, hold critical information on the presence of diseases. In a new approach, scientists are working to adapt laboratory equipment initially designed to analyze only mRNA, the coding parts of genetic material, and also examine the non-coding regions of DNA. This innovative genomics technique could reveal the genetic mechanisms behind both human health and diseases, offering a potential method for early detection of conditions like cancer and dementia. The research, published in Genome Biology, proposes a novel approach to exploring the root causes of various diseases.

Over the past two decades, researchers have used advanced tools to analyze non-coding RNAs and identify the 3% of sequences that are coded. As part of the Canadian Epitranscriptomics Project, scientists at the University of Manitoba (Winnipeg, Canada) are leveraging this technology to create the "Epitranscriptome Atlas," which aims to map the remaining 97% of the human genome. This effort will enhance our understanding of how alterations in non-coding RNAs contribute to disease.

“My lab applies what we call next-generation sequencing and bioinformatics to magnify the impact of recent advances in AI algorithms,” said Dr. Athanasios Zovoilis, associate professor of biochemistry and medical genetics in the Max Rady College of Medicine. “The right equipment for this new field of study has been in our lab for some time, but we lacked the tools to use it to its fullest potential, until now. The impact of employing AI and novel genomics approaches is that researchers across the world can now leverage next-generation sequencing in the new field of epitranscriptomics, exploring the genetic interactions of non-coding RNAs.”

“If we imagine the human genome as an atlas of the earth, with each gene represented by one satellite image, we have so far revealed fewer than 36,000 of the necessary 1.2 million images to complete our atlas. The mapped RNA sequences represent specific human tissues, and we are now able to begin filling in large sections of our atlas to pinpoint the genomic locations of diseases and other important biological functions for the first time,” Zovoilis added.

 

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
H.pylori Test
Humasis H.pylori Card
New
Multi-Function Pipetting Platform
apricot PP5
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.