We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





Keynote Address to Focus on CRISPR/Cas9 Gene Editing

By LabMedica International staff writers
Posted on 08 Jun 2017
Print article
Image: Gene editing technologies, including CRISPR/Cas9, offer the ability to directly modify or correct the underlying disease-associated changes in our genome (Photo courtesy of CRISPR Therapeutics).
Image: Gene editing technologies, including CRISPR/Cas9, offer the ability to directly modify or correct the underlying disease-associated changes in our genome (Photo courtesy of CRISPR Therapeutics).
The widely used CRISPR/Cas9 genome editing technique is to be the subject of the keynote address of the plenary sessions of the July 30 - August 3, 2017, AACC Annual Meeting & Clinical Lab Expo (San Diego, CA, USA).

The featured speaker will be Dr. Jennifer Doudna, professor of chemistry and molecular and cell biology at the University of California, Berkeley (USA). The title of her presentation is "CRISPR Biology, Technology & Ethics: The Future of Genome Engineering". This presentation will describe how the bacterial CRISPR adaptive immune system continues to inspire development of powerful genome engineering tools, enabling advances in both fundamental biology and applications to the mammalian brain.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs.

Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides (CRISPRs) that shepherd the Cas9 protein to the target gene on a DNA strand.

The ethics of CRSPR/Cas9 were discussed by a panel of experts, and their remarks were published in the October 2016 issue of the journal Clinical Chemistry. The panelists cautioned that making the methodology cheap and easy enough for poorly funded amateurs could have vast effects by making it harder for anyone to control. They also warned about the potential consequences of off-target effects, including lack of specificity and incomplete targeting, which could have devastating effects on patients.

On the other hand, they suggested that when CRISPR technology becomes completely safe and effective, it could be used to edit somatic cells of people or fetuses and embryos to prevent heritable diseases, even to edit the germline to prevent any future transmission of heritable diseases.

The importance of the future role of CRISPR/Cas9 is underlined by the choice to make this technology the topic of this year's keynote address.

Related Links:
AACC Annual Meeting & Clinical Lab Expo
University of California, Berkeley
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
RFID Inlay
Minidose U8 RAIN
New
Tube Rotator
RotoMini/RotoMini PLUS

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.