We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Time-Release Microcapsules Deliver Anti-Inflammatory Hormone to Repair Cartilage Damaged by Osteoarthritis

By LabMedica International staff writers
Posted on 03 Feb 2015
Print article
Image: The micrograph depicts a CNP microcapsule. A new treatment delivery method based on CNP microcapsules could reduce inflammation in cartilage affected by osteoarthritis and reverse damage to tissue (Photo courtesy of the Queen Mary University of London).
Image: The micrograph depicts a CNP microcapsule. A new treatment delivery method based on CNP microcapsules could reduce inflammation in cartilage affected by osteoarthritis and reverse damage to tissue (Photo courtesy of the Queen Mary University of London).
Microcapsules loaded with C-type natriuretic peptide (CNP) have been shown to reduce the type of inflammation characteristic of osteoarthritis (OA) in a model system based on the culture of animal cartilage tissue.

CNP is processed proteolytically to form a secreted hormone of the natriuretic peptide family. The hormone regulates the growth and differentiation of cartilaginous growth plate chondrocytes and may also be vasoactive (causing constriction or dilation of blood vessels) and natriuretic (inhibiting reabsorption of cations, particularly sodium, from urine). Chondrocytes have the potential to repair cartilage damage observed in (OA), but developing treatments for OA based on CPN has been challenging due to poor targeting and difficulty in delivery of the hormone, which readily breaks down in vivo.

To overcome the problems of targeting and delivery, investigators at Queen Mary University of London (United Kingdom) prepared polyelectrolyte microcapsules loaded with CNP and examined whether a layer-by-layer (LbL) approach could have protective effects in cartilage explants treated with the pro-inflammatory cytokine, interleukin-1beta (IL-1beta). The two-micrometer in diameter microcapsules comprised individual CNP-containing layers that released the hormone slowly over time.

Results published in the January 4, 2015, online edition of the journal Biomacromolecules revealed that images obtained by SEM (scanning electron microscopy) showed uniform, spherical microcapsules two to three micrometers in diameter with morphological characteristic similar to templates loaded with or without CNP. The protein was localized around the external surface of the microcapsules with encapsulation efficiencies more than 82.9%. CNP release profiles were broadly similar following nine days of culture. The presence of CNP microcapsules did not significantly affect cell viability (80%) with DNA values that remained stable throughout the culture conditions. Treatment of cartilage explants with CNP microcapsules led to concentration-dependent inhibition of nitric oxide (NO) release in response to IL-1beta and restoration of matrix synthesis.

The results demonstrated the potential for controlled delivery of CNP to dampen pro-inflammatory effects induced by IL-1beta in cartilage explants and to promote cartilage repair in vivo.

Senior author Dr. Tina Chowdhury, associate professor of bioengineering at Queen Mary University of London, said, "If this method can be transferred to patients it could drastically slow the progression of osteoarthritis and even begin to repair damaged tissue. CNP is currently available to treat other conditions such as skeletal diseases and cardiovascular repair. If we could design simple injections using the microcapsules, this means the technology has the potential to be an effective and relatively cheap treatment that could be delivered in the clinic or at home."

Related Links:

Queen Mary University of London


Gold Member
Hematology Analyzer
Swelab Lumi
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.