We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Time-Release Microcapsules Deliver Anti-Inflammatory Hormone to Repair Cartilage Damaged by Osteoarthritis

By LabMedica International staff writers
Posted on 03 Feb 2015
Print article
Image: The micrograph depicts a CNP microcapsule. A new treatment delivery method based on CNP microcapsules could reduce inflammation in cartilage affected by osteoarthritis and reverse damage to tissue (Photo courtesy of the Queen Mary University of London).
Image: The micrograph depicts a CNP microcapsule. A new treatment delivery method based on CNP microcapsules could reduce inflammation in cartilage affected by osteoarthritis and reverse damage to tissue (Photo courtesy of the Queen Mary University of London).
Microcapsules loaded with C-type natriuretic peptide (CNP) have been shown to reduce the type of inflammation characteristic of osteoarthritis (OA) in a model system based on the culture of animal cartilage tissue.

CNP is processed proteolytically to form a secreted hormone of the natriuretic peptide family. The hormone regulates the growth and differentiation of cartilaginous growth plate chondrocytes and may also be vasoactive (causing constriction or dilation of blood vessels) and natriuretic (inhibiting reabsorption of cations, particularly sodium, from urine). Chondrocytes have the potential to repair cartilage damage observed in (OA), but developing treatments for OA based on CPN has been challenging due to poor targeting and difficulty in delivery of the hormone, which readily breaks down in vivo.

To overcome the problems of targeting and delivery, investigators at Queen Mary University of London (United Kingdom) prepared polyelectrolyte microcapsules loaded with CNP and examined whether a layer-by-layer (LbL) approach could have protective effects in cartilage explants treated with the pro-inflammatory cytokine, interleukin-1beta (IL-1beta). The two-micrometer in diameter microcapsules comprised individual CNP-containing layers that released the hormone slowly over time.

Results published in the January 4, 2015, online edition of the journal Biomacromolecules revealed that images obtained by SEM (scanning electron microscopy) showed uniform, spherical microcapsules two to three micrometers in diameter with morphological characteristic similar to templates loaded with or without CNP. The protein was localized around the external surface of the microcapsules with encapsulation efficiencies more than 82.9%. CNP release profiles were broadly similar following nine days of culture. The presence of CNP microcapsules did not significantly affect cell viability (80%) with DNA values that remained stable throughout the culture conditions. Treatment of cartilage explants with CNP microcapsules led to concentration-dependent inhibition of nitric oxide (NO) release in response to IL-1beta and restoration of matrix synthesis.

The results demonstrated the potential for controlled delivery of CNP to dampen pro-inflammatory effects induced by IL-1beta in cartilage explants and to promote cartilage repair in vivo.

Senior author Dr. Tina Chowdhury, associate professor of bioengineering at Queen Mary University of London, said, "If this method can be transferred to patients it could drastically slow the progression of osteoarthritis and even begin to repair damaged tissue. CNP is currently available to treat other conditions such as skeletal diseases and cardiovascular repair. If we could design simple injections using the microcapsules, this means the technology has the potential to be an effective and relatively cheap treatment that could be delivered in the clinic or at home."

Related Links:

Queen Mary University of London


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Gold Member
Chagas Disease Test
CHAGAS Cassette
New
Treponema Pallidum Test
ZEUS IFA Fluorescent Treponemal Antibody-Absorption (FTA-ABS) Test System
New
QC Software Solution
Unity Interlaboratory Program

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.