We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Single Amino Acid Controls Signaling Molecule Activity

By LabMedica International staff writers
Posted on 09 Jan 2018
Print article
Image: Probes revealed the inner architecture when the A2AAR protein transmitted molecular signals through a cell membrane (Photo courtesy of Drs. Kurt Wüthrich and Matthew Eddy, The Scripps Research Institute).
Image: Probes revealed the inner architecture when the A2AAR protein transmitted molecular signals through a cell membrane (Photo courtesy of Drs. Kurt Wüthrich and Matthew Eddy, The Scripps Research Institute).
An advanced NMR (nuclear magnetic resonance) spectroscopy technique was used to follow the dynamic structural changes that occurred during binding of a drug to a cell membrane-spanning G protein-coupled receptor.

The 826 human G protein-coupled receptors (GPCRs), which are involved in signaling across cellular membranes, govern a wide range of vital physiological processes, making GPCRs prominent drug targets.

X-ray crystallography techniques have provided GPCR molecular architectures, but these methods lack the ability to detail additional structural dynamics that occur when the molecules are in motion. To complete this picture, investigators at The Scripps Research Institute (La Jolla, CA, USA) used NMR spectroscopy to study the wild-type-like A2A adenosine receptor (A2AAR) in solution. A2AAR is a GPCR that regulates blood flow and inflammation and mediates the effects of caffeine. A2AAR is a validated target for treating Parkinson's disease and a relatively new target for targeting cancers.

To carry out this study the investigators assigned individual chemical markers to each of six tryptophan indole and eight glycine backbone NMR signals in A2AAR. These NMR probes provided insight into the role of a specific aspartic acid (Asp) moiety as an allosteric link between the drug binding site and the intracellular signaling surface.

Results published in the December 2, 2017, online edition of the journal Cell revealed that modifying or replacing this particular amino acid in the center of the receptor destroyed the receptor's ability to send signals into the cell. Furthermore, the NMR data showed that one of the tryptophan amino acids in A2AAR acted as a "toggle switch" by flipping up and down in concert with A2AAR's activity.

"This basic knowledge is potentially helpful for improving drug design," said senior author, the Nobel Prize winning Dr. Kurt Wüthrich, professor of structural biology at The Scripps Research Institute. "GPCRs do just about everything you can imagine, but for a long time, drug design was being done without knowing how GPCRs looked. With this finding, we can say "A-ha! It is this change in structure that kills the signaling activity." Maybe we can make a change in a drug to overcome this limit."

Related Links:
The Scripps Research Institute

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
Gold Member
Veterinary Hematology Analyzer
Exigo H400
New
Ross River Virus Test
Ross River Virus Real Time PCR Kit
New
QC Software Solution
Unity Interlaboratory Program

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.