We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Three-Dimensional Growth Chamber Promotes Understanding of Angiogenesis

By LabMedica International staff writers
Posted on 11 Feb 2019
Print article
Image: The microvessel-on-a-chip used for angiogenesis research (Photo courtesy of Dr. Yukiko Matsunaga, Institute of Industrial Science, the University of Tokyo).
Image: The microvessel-on-a-chip used for angiogenesis research (Photo courtesy of Dr. Yukiko Matsunaga, Institute of Industrial Science, the University of Tokyo).
Collaboration between French and Japanese researchers resulted in the development of a three-dimensional "microvessel-on-a-chip" device for advancing the understanding of the processes that drive angiogenesis (production of new blood vessels).

Elucidating the mechanisms underlying sprouting angiogenesis and permeability should enable the development of more effective therapies for various diseases, including retinopathy, cancer, and other vascular disorders. Sprouting angiogenesis was the first identified form of angiogenesis. It occurs in several well-characterized stages. First, biological signals known as angiogenic growth factors activate receptors on endothelial cells present in pre-existing blood vessels. Second, the activated endothelial cells begin to release proteases that degrade the basement membrane to allow endothelial cells to escape from the original (parent) vessel walls.

The endothelial cells then proliferate into the surrounding matrix and form solid sprouts connecting neighboring vessels. As sprouts extend toward the source of the angiogenic stimulus, endothelial cells migrate in tandem, using adhesion molecules called integrins. These sprouts then form loops to become a full-fledged vessel lumen as cells migrate to the site of angiogenesis. Sprouting occurs at a rate of several millimeters per day, and enables new vessels to grow across gaps in the vasculature.

Investigators at the Institute of Industrial Science of the University of Tokyo (Japan) and the French National Center for Scientific Research (Lille, France) focused on the protein EGFL7 (epidermal growth factor-like domain 7), which plays an important role in NOTCH signaling and in the organization of angiogenic sprouts. For this purpose they developed a three-dimensional EGFL7-knockdown in vitro microvessel model in order to investigate the effect of EGFL7 at a tissue level.

The investigators reported in the March 2019 online edition of the journal Biomaterials that EGFL7 knockdown suppressed vascular endothelial growth factor A (VEGF-A)-induced sprouting angiogenesis accompanied by an overproduction of endothelial filopodia and reduced collagen IV deposition at the basal side of endothelial cells. They also observed impaired barrier function, which reflected an inflammatory condition. Furthermore, the results showed that proper formation of adherens junctions and phosphorylation of VE-cadherin was disturbed.

"We obtained more insight into how blood vessels form by building our own in the lab from scratch, first forming a collagen mold containing a needle that was then removed, leaving a space that was then colonized by human umbilical vein endothelial cells," said senior author Dr. Yukiko T. Matsunaga, associate professor of biomedical engineering at the University of Tokyo. "We next examined the effects of EGFL7 by comparing two models of this type, one in which this molecule was allowed to function normally in these cells and another in which it was knocked down by siRNA."

Related Links:
Institute of Industrial Science of the University of Tokyo
French National Center for Scientific Research

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
New
Celiac Disease Test
AESKULISA tTg-A New Generation
New
Ureaplasma Urealyticum Test
Duplicα RealTime Ureaplasma Urealyticum Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: RT-QuIC Prion, CSF is the only definitive antemortem clinical test of its kind that doesn’t involve a brain biopsy (Photo courtesy of Mayo Clinic)

CSF Test Distinguishes Prion Disease from Other Causes of Rapidly Progressive Dementia

Rapidly progressive dementias are a category of dementia where patients experience a swift decline from the onset of symptoms to losing functional independence, typically within two years.... Read more

Immunology

view channel
Image: New insights into preterm infant immunity could inform care (Photo courtesy of 123RF)

New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood

Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more

Pathology

view channel
Image: The Results Manager System (Photo courtesy of QuidelOrtho)

Informatics Solution Elevates Laboratory Efficiency and Patient Care

QuidelOrtho Corporation (San Diego, CA, USA) has introduced the QuidelOrtho Results Manager System, a cutting-edge informatics solution designed to meet the increasing demands of modern laboratories.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.