We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Fluorescent Sensor Array Lights up Alzheimer’s-Related Proteins for Earlier Detection

By LabMedica International staff writers
Posted on 08 Feb 2024
Print article
Image: Lighting up Alzheimer’s-related proteins allows for earlier disease detection (Photo courtesy of 123RF)
Image: Lighting up Alzheimer’s-related proteins allows for earlier disease detection (Photo courtesy of 123RF)

Many neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, pose a diagnostic challenge in their early stages before symptoms manifest. Identifying disease-related biomarkers like amyloids, which are aggregated proteins, could offer crucial early insights if they can be detected effectively. Now, researchers have developed a new method that employs an array of sensor molecules to illuminate amyloids. This innovation could play a significant role in monitoring disease progression or differentiating various amyloid-related disorders.

In neurodegenerative diseases, a common factor is the disruption of brain communication, often due to “sticky” clumps of misfolded proteins called amyloids that interrupt signal transmission. These amyloids are believed to be integral to Alzheimer’s disease progression, suggesting their potential as early diagnostic markers to broaden treatment possibilities. While radioimaging techniques like positron emission tomography (PET) scans can detect amyloids, they require advanced equipment and generally target only specific amyloids linked to the disease. As an alternative, fluorescence imaging techniques have been investigated for their simpler yet sensitive capability to detect multiple distinct amyloids.

A team of researchers at The University of Sydney (NSW, Australia) set out to develop a fluorescent sensor array specifically for amyloids. This tool aims to monitor Alzheimer’s and other diseases' progression and differentiate atypical amyloids from other naturally occurring amyloid-forming proteins. The team initially combined five coumarin-based molecular probes, each responding with varying fluorescence levels upon encountering amyloids, into an array. They discovered, however, that using just two of these probes, chosen for their strong fluorescence responses, still yielded a highly sensitive detection system and provided a unique fluorescent “fingerprint” for individual amyloids.

The effectiveness of this two-probe array was tested in a simulated biological fluid containing molecules that could potentially disrupt sensing. Nevertheless, the array maintained its high sensitivity and selectivity. Its efficacy was further validated using samples from the brains of mouse models of Alzheimer’s. The researchers noted distinct fluorescence patterns at the early (6 months old) and later (12 months old) stages of the disease. Moreover, the array produced a distinct fluorescence signature for three amyloids typically associated with Alzheimer’s, another disease-related amyloid, and five “functional amyloids” not implicated in the disease. According to the researchers, this tool offers the potential to differentiate between closely related amyloids, paving the way for earlier and more precise diagnosis of amyloid-related diseases.

Related Links:
The University of Sydney

Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
Nuclear Matrix Protein 22 Test
NMP22 Test
New
Thermal Cycler
Axygen MaxyGene II

Print article

Channels

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.