We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





Simple, Inexpensive, Fast and Accurate Nano-Sensors Pinpoint Infectious Diseases Like SARS CoV-2

By LabMedica International staff writers
Posted on 03 Feb 2022
Print article
Illustration
Illustration

A novel method uses simple, inexpensive, fast and accurate nano-sensors to pinpoint infectious diseases like Ebola virus (EBOV) and SARS CoV-2.

The technology, developed by researchers at Arizona State University (Tempe, AZ, USA) and the University of Washington Seattle (Seattle, WA, USA), represents a significant advance in the fight against infectious diseases. It can be developed and produced at very low cost, deployed within weeks or days after an outbreak, and made available for around one cent per test.

In recent years, deadly infectious diseases, including Ebola and COVID-19, have emerged to cause widespread human devastation. Although researchers have developed a range of sophisticated methods to detect such infections, existing diagnostics face many limitations. The new technique, known as Nano2RED, is a clever twist on conventional high-accuracy tests relying on complex testing protocols and expensive readout systems. The in-solution nano-sensors (“Nano2” in the name) serve to detect disease antigens in a sample by simple mixing. The innovative Rapid and Electronic Readout process (“RED”) developed by the researchers delivers test results, which are detectable as a color change in the sample solution, and record the data through inexpensive semiconductor elements such as LEDs and photodetectors.

Compared with widely used high-accuracy lab tests, such as ELISA, Nano2RED is much easier to use. It does not require surface incubation or washing, dye labeling, or amplification, yet still provides about 10 times better sensitivity than ELISA. In addition, the use of semiconductor devices supports a highly portable digital readout system, which can be developed and produced at a cost as low as a few dollars, making it ideal not only for lab use but for clinics, home use, and remote or resource-strained locations. This approach is based on modular designs, and could potentially be used to test for any pathogen.

As a proof of concept, the researchers conducted a study to apply their innovative method to test for two prominent diseases, Ebola virus (EBOV) and SARS CoV-2. The new technology can identify secreted glycoprotein (sGP), a telltale fingerprint of Ebola virus disease and the SARS-CoV-2 spike protein receptor binding domain (RBD). Similar to ELISA, Nano2RED also relies on binding affinity for positive diagnosis but instead uses floating gold nanoparticles for readout. Unlike ELISA, Nano2RED can be developed from scratch in roughly 10 days and theoretically applicable for any pathogen, providing vitally important early surveillance in the case of a disease outbreak. It can deliver test results in 15-20 minutes and may be administered at an estimated cost of a penny per test. In the current study, the new test was shown to detect Ebola’s sGP in serum with a sensitivity roughly 10 times better than ELISA.

“This technology works not because it is complex but because it is simple,” said Chao Wang, a researcher at Arizona State University’s Biodesign Institute and School of Electrical, Computer & Energy Engineering. “Another unique feature is the multidisciplinary nature of biosensing. A fundamental understanding of biochemistry, fluidics, and optoelectronics helped us come up with something this ‘simple’.”

Related Links:
Arizona State University 
University of Washington Seattle 

Gold Member
SARS-CoV-2 RT-PCR Assay
Reliance SARS-CoV-2 RT-PCR Assay Kit
Gold Member
Multiplex Genetic Analyzer
MassARRAY Dx Analyzer (Europe only)
New
Nuclear Matrix Protein 22 Test
NMP22 Test
New
Chemistry Analyzer
MS100

Print article

Channels

Molecular Diagnostics

view channel
Image: The Synovasure RISC Panel utilizes a single synovial fluid specimen for assessing biomarkers associated with common arthritis types (Photo courtesy of CD Diagnostics)

New Test for Early Osteoarthritis Diagnosis to Improve Clinical Decision-Making

As the population ages, the prevalence of osteoarthritis (OA) continues to rise. Typically, osteoarthritis is diagnosed in its later stages when cartilage degradation is advanced, making it challenging... Read more

Hematology

view channel
Image: Personalized blood count could lead to early intervention for common diseases (Photo courtesy of 123RF)

Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals

A complete blood count (CBC) screening is a standard examination most physicians request for healthy adults. This test is essential for evaluating a patient’s overall health with a single blood sample.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more

Pathology

view channel
Image: The Lunit SCOPE uIHC Universal Immunohistochemistry (uIHC) AI model (Photo courtesy of Lunit)

AI Model Excels at Analyzing Diverse Cancer Types and Unseen IHC Data

Immunohistochemistry (IHC) plays a crucial role in oncology, allowing pathologists to detect and quantify protein expression, which informs decisions for systemic therapy. Despite the existence of several... Read more

Technology

view channel
Image: Site-selective immobilization of different bioreceptors on individual field-effect transistors, achieved through the use of thermal scanning probe lithography (Photo courtesy of NYU Tandon)

FET-Based Sensors Pave Way for Portable Diagnostic Devices Capable of Detecting Multiple Diseases

In a world facing a wide range of health challenges, from rapidly spreading viruses to chronic diseases and drug-resistant bacteria, the demand for fast, reliable, and user-friendly home diagnostic tests... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.