We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App





World-First Method for Rapid Isolation and Characterization of COVID-19 Variants

By LabMedica International staff writers
Posted on 01 Jun 2022
Print article
Image: Rapid lab analysis informs global guidelines on COVID-19 vaccination and treatment (Photo courtesy of UNSW Sydney)
Image: Rapid lab analysis informs global guidelines on COVID-19 vaccination and treatment (Photo courtesy of UNSW Sydney)

Researchers have developed a methodology that speeds up the process for isolating and characterizing the risks posed by COVID-19 variants of concern. The methodology, which has been shared with the global scientific community through publication in Nature Microbiology, is highly cost-effective, automated, and can be used to measure the effectiveness of therapeutics and scaled to test thousands of samples.

The methodology, called R-20, was developed by researchers from the Kirby Institute at UNSW Sydney (Sydney, Australia) and used to analyze all major circulating viral variants in 2021 that were identified from patients in hotel quarantine. At the end of 2021, it was applied to Australia’s first Omicron samples. The researchers found that the vaccine-induced antibody response to Omicron was 15-20-fold weaker than to the original SARS-CoV-2 strain. The rapid analysis included details of how well the variant evades antibodies and how resilient it is. The results have been cited in Centers for Disease Control and Prevention (CDC) guidelines, World Health Organization (WHO) technical reports and by the Australian Technical Advisory group on Immunization (ATAGI) regarding the use of booster vaccinations.

In order to develop the methodology, the researchers took lessons learned from HIV to develop cells with receptors that viruses ‘like’. They looked at hundreds of different cells to identify ones that would allow the virus to replicate as quickly and effectively as possible. They termed these cells as the ‘canaries in the coal mine’ – because they effectively die in the process of telling the team what each variant is up to. They also allow the team to capture variants of the virus quicker than any other cell culture method, with sensitivities approaching that of a PCR swab test.

Using R-20, the researchers look at viral properties of variants to understand how sick the virus is likely to make the population, as well as how evasive it is to existing vaccines and treatments. Identifying this quickly is crucial to inform public health policies such as vaccination strategies, which therapeutics will still work and advice on mask use to mitigate spread of variants to vulnerable populations such as the elderly.

“What makes our R-20 approach unique is its speed and accuracy,” says Associate Professor Turville who developed the methodology. “The best way to quickly understand how a virus works is to genetically develop a cell with receptors that the virus likes. R-20 uses 'supercharged' cells that allow the virus to replicate four times faster than through any other techniques currently published in the scientific literature.”

Related Links:
UNSW Sydney 

Gold Member
SARS-COV-2 PLUS UK Real Time PCR kit
SARS-COV-2 PLUS UK REALTIME PCR KIT
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Gold Member
Chagas Disease Test
CHAGAS Cassette
New
Cytomegalovirus Assay
Alethia CMV

Print article

Channels

Immunology

view channel
Image: Example image of the high-throughput microscopy method used in the study, showing immune cells stained with different fluorescence markers (Photo courtesy of Felix Kartnig/CeMM, MedUni Vienna)

Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies

Rheumatoid arthritis is the most common inflammatory joint disorder, with women three times as likely to suffer from the condition as men. Treatment advances made over the past decades have led to the... Read more

Microbiology

view channel
Image: RNA sequencing directly from whole blood aims to expand access to LRTI testing (Photo courtesy of CARB-X)

Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood

Pneumonia and lower-respiratory-tract infections (LRTIs) are among the top causes of illness and death globally, particularly in vulnerable populations such as the elderly, young children, and immunocompromised... Read more

Pathology

view channel
Image: The new method uses DNA sequencing to measure metabolites (Photo courtesy of 123RF)

New Metabolite Detection Method Using DNA Sequencing Could Transform Diagnostics

Metabolites play a vital role as biomarkers that provide insights into our health, and when their levels go awry, it can lead to diseases such as diabetes and phenylketonuria. Quantifying metabolites remains... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.