We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Filtration Method Developed for Cord Blood

By LabMedica International staff writers
Posted on 27 Dec 2012
Print article
A novel filtration system using a nonchemical-coated and nonwoven polyester fabric filter, which traps cells through affinity, has been developed for cord blood.

Cord blood (CB) is being increasingly used as a source of hematopoietic stem cells for transplantation to treat diseases of the blood and immune systems, and there is an urgent need to expand CB banking worldwide.

Scientists at Kyushu University School of Medical Science (Fukuoka, Japan) developed a polyester fabric filter specifically for CB, which traps cells and does not require centrifugation or potentially toxic chemicals. Normally CB processing requires costly machinery or a clean room that hampers wider application of cord blood transplantation (CBT) particularly in the developing countries.

The collection efficacy was calculated by counting total nucleated cells (TNCs) using an automated hematology analyzer KX-21 (Sysmex; Kobe, Japan) or ABX Pentra hematology analyzer (Horiba; Kyoto, Japan). The red blood cell (RBC) compartment combines the RBCs and the nucleated red cells. The number of mononuclear cells (MNCs) or polymorphonuclear cells (PMNs) was calculated as the product of TNC count, and the percentage of each population analyzed by FACSCanto flow cytometry (BD Biosciences; San Jose, CA, USA). Collection efficacy was defined as the ratio of cell number in the collected fraction relative to the introduced cord blood.

The loss of TNCs, MNCs, and PMNs was less than 5%. The loss of CD34+ cells was only 0.5%, indicating the minimal loss of nucleated cells and CD34+ cells during this process. On the other hand, 84.8% of RBCs and 61.0% of platelets were in the flow-through fraction. These data indicated that the device could trap nucleated cells and remove RBCs and platelets efficiently. Therefore cell processing with the device resulted in minimum cell loss of total cells and CD34+ cells, without impairing the ability of CD34+ cells to engraft and differentiate both in vivo and in vitro.

The authors concluded that CB processing with the device is simple, cost-effective, and nontoxic without requiring costly equipment will facilitate international CB banking. This will help in meeting the increasing worldwide demand for CB for allogeneic hematopoietic stem cell transplantation. The study was published on December 14, 2012, in the International Journal of Laboratory Hematology.

Related Links:
Kyushu University School of Medical Science
Sysmex
Horiba


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit
New
Biological Indicator Vials
BI-O.K.

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.