We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Major Trauma Emergency Blood Transfusions Need Consistency

By LabMedica International staff writers
Posted on 16 Feb 2016
Print article
Image: Blood transfusion components that include red blood cells, plasma and other clotting products (Photo courtesy of the Australian Red Cross Service).
Image: Blood transfusion components that include red blood cells, plasma and other clotting products (Photo courtesy of the Australian Red Cross Service).
Globally, bleeding following injury is estimated to be responsible for over two million deaths per year and current treatment strategies focus on the rapid delivery of red blood cells, plasma and other clotting products.

Nearly 5,000 trauma patients sustain major hemorrhage in England and Wales each year and that one-third of those die and delays in blood transfusion practices may contribute to this high death rate. The logistics of providing the correct quantities in the right proportion during the first minutes and hours of emergency care can be extremely challenging.

A team of scientists led by those at the Queen Mary, University of London (London, UK) carried out a prospective observational study from 22 hospitals in the UK, including both major trauma centers and smaller trauma units. Eligible patients received at least four units of packed red blood cells (PRBCs) in the first 24 hours of admission with activation of the massive hemorrhage protocol. The study outcomes were the use of blood components, critical care during hospital stay, and mortality at 24 hours, 30 days and one year.

Overall, only 2% of all patients with massive hemorrhage received what might be considered the optimal transfusion of a high dose of clotting products in conjunction with red blood cells during the first hour of arrival within the Emergency Department. The average time to transfusion of red blood cells was longer than expected, at 41 minutes. Administration of specific blood components to aid with blood clotting such as plasma, platelets and cryoprecipitate was significantly delayed, occurring on average 2-3 hours after admission.

Mortality from bleeding tended to occur early, with nearly two-thirds of all deaths in the first 24 hours. An unexpectedly high number of deaths (7.9%) occurred once the patient left hospital, the reasons for which were unclear. The incidence of major hemorrhage increased markedly in patients over 65 years, who were twice as likely to suffer massive hemorrhage as a result of an injury compared to younger groups. Patients who received a cumulative ratio of fresh frozen plasma to PRBCs of at least 1:2 had lower rates of death than those who received a lower ratio. There were delays in administration of blood. Platelets and cryoprecipitate were either not given, or transfused well after initial resuscitation.

Karim Brohi, MD, a professor of Trauma Surgery and senior author of the study said, “Bleeding is the leading cause of preventable death in trauma. The rapid and consistent delivery of blood, plasma, platelets and other clotting products to trauma patients is essential to maintain clotting during hemorrhage and has been shown to halve mortality. However, we found that only 2% of patients with massive hemorrhage received the optimal type of blood transfusion for their resuscitation. There is a clear opportunity for clinicians to improve the delivery of blood and clotting products during resuscitation for major hemorrhage.” The study was published on February 3, 2016, in the British Journal of Surgery.

Related Links:

Queen Mary, University of London 


New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.