We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Flow Cytometry-Based Method Analyzes Heinz Bodies

By LabMedica International staff writers
Posted on 26 Jan 2017
Print article
Image: Heinz bodies in red blood cells from a patient with Glucose-6-phosphate dehydrogenase deficiency (Photo courtesy of the School of Medicine UC Davis).
Image: Heinz bodies in red blood cells from a patient with Glucose-6-phosphate dehydrogenase deficiency (Photo courtesy of the School of Medicine UC Davis).
Heinz bodies are inclusions within red blood cells (RBCs) that are composed of denatured hemoglobin molecules and are a highly sensitive indicator of in vivo oxidative stress. Heinz body formation has also been reported in chronic liver disease and α-thalassemia patient.

Historically, light microscopes have been used to visualize specially stained Heinz bodies, which can be seen as spherical inclusions at the peripheries of RBCs. However, microscopic examination of Heinz bodies is time-consuming, labor intensive, and of low sensitivity.

Scientists at the Chulalongkorn University and their associates collected whole-blood samples from patients deficient in Glucose-6-phosphate dehydrogenase (G6PD) and healthy volunteers. The study's G6PD-deficient group included patients who had previously been diagnosed. These subjects were apparently healthy and ranged in age from 25 to 45 and none had ever experienced an acute hemolytic crisis or had experienced fever, inflammation, or infection.

Washed RBCs were incubated in the acetylphenylhydrazine solution at 37 °C. After incubating for one hour, the Heinz bodies were counted under a light microscope at ×100. G6PD enzyme activity was determined using the G6PD assay kit. Enzyme activity was determined using a temperature-regulated spectrophotometer by measuring the change in rate in absorbance at 340 nm. RBCs positive for Heinz bodies were examined using a FACSCanto II cytometer.

The investigators found that RBCs treated with acetylphenylhydrazine formed Heinz bodies and emitted a broad spectrum of fluorescence that could be detected by flow cytometry. The maximum emission of fluorescence was observed at 45 minutes after the incubation with acetylphenylhydrazine. In addition, the fluorescence emitted was stable for at least 72 hours. The flow cytometer could detect the RBCs positive for Heinz bodies even if they made up as little as 0.1% of the total RBC population. Furthermore, the percentage and number, respectively, of RBCs positive for Heinz bodies in G6PD-deficient patients and normal donors exhibited a mean ± standard deviation (SD) of 68.9 ± 27.5 versus 50.9 ± 28.6 and 96,014 ± 35,732 cells/μL versus 74,688 ± 36,514 cells/μL.

The author concluded that Heinz bodies induced by acetylphenylhydrazine emit fluorescence, and this fluorescence could be examined using flow cytometry. Their study suggests the potential use of the developed method to investigate the formation of Heinz bodies in clinical samples. The study was published on January 16, 2017, in the International Journal of Laboratory Hematology.

Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
PSA Test
Human Semen Rapid Test
New
Centrifuge
Centrifuge 5430/ 5430 R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.