Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Multiple Myeloma Sequences Reveal Prognostic Immunoglobulin Translocation

By LabMedica International staff writers
Posted on 08 May 2019
Multiple myeloma is the second most common hematological cancer, which affects terminally differentiated antibody secreting B cells, known as plasma cells. Clinical manifestations of myeloma include hypercalcemia, anemia, renal failure, and lytic bone lesions.

Genetic analyses of myeloma over the last quarter century have revealed a bifurcation of founding genetic alterations with approximately half of myelomas containing an immunoglobulin heavy chain (IgH) translocation. The other myelomas are hyperdiploid, which is an aneuploidy of chromosomes 3, 5, 7, 9, 11, 15, 19 and 21.

Hematologists at the Emory University School of Medicine (Atlanta, GA, USA) and their colleagues used whole-genome sequence data for samples from nearly 800 multiple myeloma patients profiled for the longitudinal Multiple Myeloma Research Foundation-funded "Clinical Outcomes in Multiple Myeloma to Personal Assessment," or CoMMpass study, including cases from North America and Europe, and searched for structural variants with potential ties to survival. Recurrent translocations involving the immunoglobulin lambda (IgL) antibody locus may provide previously unappreciated clues to treatment response and patient outcomes in multiple myeloma.

RNA-seq libraries were constructed with the TruSeq RNA Library Prep Kit v2, which yields unstranded mRNA libraries. The team used 150–2000 ng of RNA, which had an RNA integrity number of eight or higher for starting material. RNA libraries were amplified for 8–10 cycles and then sequenced on an Illumina HiSeq2000 or HiSeq2500 using v3 or v4 chemistry and 82 bp paired-end reads. Many other procedures and methods were also used.

A comprehensive analysis of structural variants in multiple myeloma was conducted using long-insert whole-genome paired-end sequencing performed on DNA isolated from CD138+ myeloma cells and normal peripheral blood to determine cancer-specific somatic alterations. The results of the study suggested that rearrangements that linked IgL to oncogenes such as MYC are associated with resistance to a standard multiple myeloma treatment called lenalidomide. Multiple myeloma patients with the risky IgL translocations also had shorter-than-usual survival times, the investigators reported, and were about half as likely to survive for at least three years compared to IgL-translocation-free cases.

With the help of chromatin immunoprecipitation sequencing on three myeloma cell lines expressing IgK, IgL, or translocated IgL, the authors found that the IgL locus contains multiple strong enhancer elements that are bound by the Ikaros transcription factor-coding gene (IKZF1). Even so, available patient data indicated that the multiple myeloma cases marked by IgL translocations did not seem to respond to so-called immunomodulatory imide (IMiD) drugs that target IKZF1.

From these and other data, the authors concluded that IgL-MYC translocations as a marker of poor prognosis, independent of other genetic abnormalities, with implications for diagnosis and treatment. The study was published on April 23, 2019, in the journal Nature Communications.

Related Links:
Emory University School of Medicine


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
New
Auto Clinical Chemistry Analyzer
cobas c 703
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.