We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Immune Profiles Analyzed in Acute Myeloid Leukemia Bone Marrow

By LabMedica International staff writers
Posted on 03 Feb 2020
Print article
Image: The BD FACSVerse Flow Cytometer (Photo courtesy of BD Biosciences).
Image: The BD FACSVerse Flow Cytometer (Photo courtesy of BD Biosciences).
In acute myeloid leukemia (AML), myeloid lineage precursor cells modified by somatic mutations and transcriptomic dysregulation infiltrate the bone marrow (BM) and disrupt normal hematopoiesis.

Risk stratification of AML patients is used to predict therapy response, tailor treatment intensity, and guide clinical decision making when considering allogeneic hematopoietic stem cell transplantation (allo-HSCT). The immunologic microenvironment in various solid tumors is aberrant and correlates with clinical survival.

Hematologists at the University of Helsinki (Helsinki, Finland) compared the immunologic landscape of formalin-fixed paraffin-embedded BM trephine samples from 69 AML, 56 chronic myeloid leukemia (CML), and 52 B-cell acute lymphoblastic leukemia (B-ALL) patients at diagnosis to 12 controls with 30 immunophenotype markers using multiplex immunohistochemistry and computerized image analysis.

The team used their hematopathologic expertise to construct tissue microarrays (TMA) blocks by punching two 1 mm cores per donor located in areas of the BM biopsy characterized with high leukemic infiltrations. Control cores were punched from representative areas. They used multiplexed immunohistochemistry (mIHC), to determine quantitative compositions and phenotypic states of millions of immune cells in AML BM. The mIHC method combines 5-plex fluorescence and 3-plex chromogenic immunohistochemistry (IHC). The cells were processed for imaging and analysis. Cell samples were analyzed with FACSVerse System (BD Pharmingen, San Diego, CA, USA).

The investigators identified distinct immunologic profiles specific for leukemia subtypes and controls enabling accurate classification of AML, CML, B-ALL, and control subjects (AUC = 1.0). Interestingly, two major immunologic AML clusters differing in age, T-cell receptor clonality, and survival were discovered. A low proportion of regulatory T cells and pSTAT1+cMAF− monocytes were identified as novel biomarkers of superior event-free survival in intensively treated AML patients. They also demonstrated that AML BM and peripheral blood samples are dissimilar in terms of immune cell phenotypes.

The authors concluded that the immunologic landscape considerably varies by leukemia subtype suggesting disease-specific immunoregulation. Furthermore, the association of the AML immune microenvironment with clinical parameters suggests a rationale for including immunologic parameters to improve disease classification or even patient risk stratification. The study was published on January 22, 2020 in the journal Blood Advances.

Related Links:
University of Helsinki
BD Pharmingen


Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager
New
Nuclear Matrix Protein 22 Test
NMP22 Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.