We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Near-Infrared Set-Up Evaluated for Dried Blood Spot Hematocrit

By LabMedica International staff writers
Posted on 11 Nov 2021
Print article
Image: The NIRFlex N-500 Fourier Transformation spectrometer (Photo courtesy of Büchi Labortechnik)
Image: The NIRFlex N-500 Fourier Transformation spectrometer (Photo courtesy of Büchi Labortechnik)
Capillary dried blood sampling, where samples are obtained from a finger or heel prick, has many advantages over traditional blood sampling. The best-known dried blood sampling technique is the generation of dried blood spots (DBS) on filter paper.

Conventional DBS cards remain valuable to collect dried blood microsamples, not in the least because DBS sampling is well known in the newborn and pediatrics field, the analysis can easily be automated and the cost is low. Amongst the approaches that were developed to cope with this issue, is the hematocrit (Hct) prediction of DBS using near-infrared (NIR) spectroscopy.

Clinical Scientists at the Ghent University Hospital (Ghent, Belgium) and their colleagues collected blood from 12 healthy volunteers via finger prick and each volunteer provided three capillary DBS and three corresponding liquid capillary samples, the latter being collected via heparinized microcapillaries. Left-over venous EDTA-anti-coagulated patient samples were used to generate DBS by pipetting 25 µL of whole blood onto Whatman 903 filter paper.

The team determined Hct L/L (liter of cells/liter of blood) values with a Sysmex XN-5000 hematology analyzer (Sysmex, Kobe, Japan). The Hct of liquid capillary blood samples was determined via centrifugation in a Hct-centrifuge (5 minutes, 12,000 rpm), and then measured using a micro-hematocrit reader (Hawksley, Lancing, UK). NIR measurements were performed on a NIRFlex N-500 Fourier Transformation spectrometer equipped with a fiber optics solids cell N500-007 (Büchi Labortechnik, Flawil, Switzerland). The results obtained via NIR for the DBS validation set (n = 49; singlicate analysis), measured at Day 0 and Day 5, were compared to those obtained with the hematology analyzer, being the standard method.

Using left-over EDTA-anticoagulated patient samples, the accuracy and precision, stability, and robustness were assessed. Furthermore, applicability of the method on capillary DBS was evaluated via finger prick samples. The investigators reported that the method validation amply met the pre-set acceptance criteria, with a maximum total precision of 4.5% and bias of 0.012 L/L. Also storage did not relevantly affect the Hct prediction, except for storage at 60 °C. The analysis of samples with a high hemolytic/icteric/lipemic index (HIL)-index showed that only lipemia had a significant effect on the Hct predictions. The mean difference was 0.035 L/L, which was considered acceptable.

The authors concluded that a commercially available NIR set-up was extensively and successfully validated, allowing non-contact Hct prediction of DBS with excellent accuracy and precision. This allows to correct for the Hct-based bias observed in partial-punch DBS analysis and the set-up of blood-plasma conversion factors, increasing the application potential of patient-centric sampling. The study was published on October 5, 2021 in the journal Clinica Chimica Acta.

Related Links:
Ghent University Hospital
Sysmex
Hawksley
Büchi Labortechnik


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Myeloperoxidase Assay
IDK MPO ELISA
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.