We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mitochondrial Damage May Explain the Increased Incidence of Hypertension in Black Adults

By LabMedica International staff writers
Posted on 03 Mar 2022
Print article
Image: Monitoring blood pressure (Photo courtesy of 123rf.com)
Image: Monitoring blood pressure (Photo courtesy of 123rf.com)

Increased plasma concentration of the enzyme xanthine oxidase (XO) and the resulting mitochondrial DNA damage that it can cause may explain why Blacks have a significantly higher incidence of hypertension than their White counterparts.

Investigators at the University of Alabama (Birmingham, USA) had previously reported that increased plasma XO activity in patients with resistant hypertension could cause mitochondrial DNA damage and promote release of fragments called mitochondrial DNA damage-associated molecular patterns (mtDNA DAMPs). Xanthine oxidase is widely distributed in the heart, liver, gut, lung, kidney and brain, as well as in blood plasma. In its normal metabolic function, it generates oxygen radicals as a byproduct, including hydrogen peroxide and superoxide, which are reactive oxygen species that can damage DNA.

Considering that Black adults in the United States have one of the highest rates of hypertension in the world and have a 50% increased incidence of heart failure as compared to Whites, the investigators examined the importance of racial differences in XO activity and mtDNA DAMPs in adults with resistant hypertension.

The experimental cohort for this study included 91 resistant hypertension patients, 44% of whom were Black, and 37 controls with normal blood pressures. The resistant hypertension group all had blood pressures above 140/90 millimeters of mercury (mmHg), and all were on four or more medications for treatment of their high blood pressure.

Results revealed that Black resistant hypertension patients were younger (mean age 52±10 versus 59±10 years), with higher XO activity and left ventricular wall thickness, and worse diastolic dysfunction than White resistant hypertension patients. Urinary sodium excretion was positively related to left ventricular end-diastolic volume and left ventricular mass among Black but not White resistant hypertension patients. Patients with resistant hypertension had increased mtDNA DAMPs versus controls, with Black mtDNA DAMPS greater than Whites.

Transmission electron microscopy of skeletal muscle biopsies in resistant hypertension patients demonstrated mitochondrial damage such as cristae lysis, myofibrillar loss, large lipid droplets, and glycogen accumulation.

"Xanthine oxidase activation may set up a feed-forward cycle of mitochondrial damage, mitochondrial reactive oxygen species production, mtDNA DAMP release, and inflammation in the pathogenesis of hypertension end-organ injury," said senior author Dr. Louis J. Dell'Italia, professor emeritus of cardiovascular disease at the University of Alabama. "These results warrant a larger study that includes metabolic syndrome and xanthine oxidase as a potential therapeutic target to reduce mitochondrial damage and attenuate left ventricular diastolic dysfunction in Black adults with resistant hypertension. Although Black adults have the highest death rate for heart failure, they are consistently underrepresented in clinical trials. The greater heart failure burden among Black adults calls for further work to discover effective preventive and therapeutic strategies for this higher-risk population."

The study was published in the February 15, 2022, online edition of the journal Hypertension.

Related Links:
University of Alabama 

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Auto-Chemistry Analyzer
CS-1200
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.