We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Transfused RBCs Rapidly Recover From Metabolic Storage Lesions

By LabMedica International staff writers
Posted on 20 Jul 2022
Print article
Image: Storage of red blood cells in alkaline PAGGGM improves metabolism but has no effect on recovery after transfusion (Photo courtesy of openPR)
Image: Storage of red blood cells in alkaline PAGGGM improves metabolism but has no effect on recovery after transfusion (Photo courtesy of openPR)

Directly after red blood cell (RBC) transfusion, a significant number of RBCs are cleared from the circulation; in some patients, up to 38% of the transfused RBCs are cleared in the first 24 hours.

During storage, RBCs undergo several metabolic and morphological changes, known as the “storage lesion.” The metabolic changes include decreased cellular levels of 2,3-diphosphoglycerate (2,3-DPG), adenosine triphosphate (ATP), and impaired redox metabolism. Decrease in the intracellular pH contributes significantly to the storage lesion.

Hematologists at the University of Amsterdam (Amsterdam, The Netherlands) conducted an open-label randomized controlled trial to study the effect of storage time and additive solution on the post-transfusion recovery (PTR) of RBCs. Twenty healthy male subjects were recruited who donated 500 mL and 200 mL of whole blood in citrate-phosphate-dextrose (CPD) at the national blood bank 35 and two days before the transfusion, respectively.

In this trial the effect of storage, phosphate-adenine-glucose-guanosine-gluconate-mannitol (PAGGGM) versus saline-adenine-glucose-mannitol (SAGM), on post-transfusion recovery (PTR) and metabolic restoration after transfusion was assessed. Subjects received an autologous biotinylated RBC concentrate stored for 35 days in SAGM or PAGGGM. As a reference for the PTR, a 2-day stored autologous biotinylated RBC concentrate stored in SAGM was simultaneously transfused. RBC phenotype and PTR were assessed after transfusion.

EDTA anti-coagulated blood samples were analyzed one day after sampling. The amount of bioRBCs was quantified by flow cytometry after staining with Streptavidin Alexa Fluor 647 conjugate. All flow cytometry experiments were performed with a flow cytometer: BD FACS, BD Fortessa + High Throughput Sampler (HTS), (BD Biosciences, San Jose, CA, USA). BioRBCs were isolated in two separate steps from the EDTA whole blood samples. This procedure was based on the differences in biotin density. In the first step, bioRBCs were isolated using magnetic beads, followed by the second step using flow cytometric cell sorting. Ultra-high pressure liquid chromatography–mass spectrometry analyses were performed using a Vanquish UHPLC coupled online to a Q Exactive mass spectrometer (Thermo Fisher, Bremen, Germany).

The investigators reported that the PTR was significantly higher in the 2-day stored RBCs than in 35-day stored RBCs two and seven days after transfusion: 96% (range 90% to 99%) versus 72% (66% to 89%) and 96% (90% to 99%) versus 72% (66% to 89%), respectively. PTR of SAGM- and PAGGGM-stored RBCs did not differ significantly. Glucose and redox metabolism were better preserved in PAGGGM-stored RBCs. The differences measured in the blood bag remained present only until one day after transfusion. No differences in RBC phenotype were found besides an increased complement C3 deposition on 35-day RBCs stored in PAGGGM.

The authors concluded that despite a better metabolic profile of PAGGGM RBCs, PAGGGM storage did not lead to a higher PTR. Therefore, storage PAGGGM is not a superior alternative for storage in SAGM. Furthermore, the metabolic storage lesion was corrected within a day after transfusion. Finally, 35 days of storage resulted in a lower PTR compared with two days of storage. The study was published on July 6, 2022 in the journal Blood Advances.

Related Links:
University of Amsterdam 
BD Biosciences 
Thermo Fisher 

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.