We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Haptoglobin 1 Allele Predicts Higher Serum Haptoglobin Concentration in SCD

By LabMedica International staff writers
Posted on 29 Dec 2022
Print article
Image: Haptoglobin 1 allele predicts higher serum haptoglobin concentration and lower multiorgan failure risk in sickle cell disease (Photo courtesy of Dreamstime)
Image: Haptoglobin 1 allele predicts higher serum haptoglobin concentration and lower multiorgan failure risk in sickle cell disease (Photo courtesy of Dreamstime)

Approximately 30% of the hemolysis in sickle cell disease (SCD) is intravascular, resulting in increasing plasma cell–free hemoglobin which contributes to organ damage through direct oxidative injury, consumption of nitric oxide, and upregulation of inflammatory pathways.

The acute-phase protein haptoglobin (HP) is the main scavenger of cell-free hemoglobin in circulation. HP binds cell-free hemoglobin with high affinity, attenuating the toxic effects of cell-free hemoglobin and facilitating its rapid removal from the blood by binding of the HP-hemoglobin complex to CD163 on monocytes and macrophages.

Hematologists at the University of Illinois at Chicago (Chicago, IL, USA) recruited into a longitudinal registry 431 patients with SCD, between October 2009 and June 2018. The median age of the cohort was 32 years (IQR, 24-43 years), 57% were female, 76% were SS/Sβ0-thalassemia genotype, and 46% were on hydroxyurea at enrollment.

Serum concentrations of HP (R&D Systems, Minneapolis, MN, USA) and cell-free hemoglobin (Bethyl Laboratories Inc; Montgomery, TX, USA) were measured by enzyme-linked immunosorbent assay in all available samples (steady state, n = 243; vaso-occlusive pain episode (VOE, n = 42; acute chest syndrome, n = 9). The team examined the association of the HP genotype with laboratory and clinical variables using an additive allelic model.

The investigators reported that in a longitudinal cohort of patients with SCD, the HP 1 allele was associated with higher HP and lower cell-free hemoglobin concentrations at a routine clinic visit as well as during hospitalization for a VOE episode or acute chest syndrome. With a median follow-up of 6.8 years, acute chest syndrome occurred in 42% (n = 163) and multiorgan failure in 14% (n = 53) of 391 patients with SCD with a minimum follow-up of six months. The HP 1 allele was independently associated with lower risk of developing multiorgan failure during acute chest syndrome (additive model hazard ratio, 0.5).

The authors concluded that future studies assessing the regulation of HP concentrations and ability to bind cell-free hemoglobin according to the HP genotype may help to identify patients with SCD at high risk for multiorgan failure and to guide interventions, such as rapid initiation of exchange transfusion or HP replacement therapy. The study was published on December 27, 2022 in the journal Blood Advances.

Related Links:
University of Illinois at Chicago
R&D Systems
Bethyl Laboratories Inc

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Liquid Based Cytology Production Machine
LBP-4032

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.