We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Lipid-ELISA Improves Detection of Potential PD Biomarker

By LabMedica International staff writers
Posted on 31 Jul 2017
Print article
Image: Immunohistochemistry for alpha-synuclein showing positive staining (brown) of an intraneural Lewy-body in the brain substantia nigra in Parkinson\'s disease (Photo courtesy of Wikimedia).
Image: Immunohistochemistry for alpha-synuclein showing positive staining (brown) of an intraneural Lewy-body in the brain substantia nigra in Parkinson\'s disease (Photo courtesy of Wikimedia).
Researchers have developed a novel diagnostic approach for Parkinson’s Disease (PD), which enabled assaying of total alpha-synuclein in whole blood cells (WBC), cerebrospinal fluid (CSF), and saliva. The new ELISA assay could lead to early diagnosis and improved monitoring of PD progression and patient response to therapy.

Making an accurate diagnosis of PD is particularly difficult in early stages and mild cases. There are currently no standard diagnostic tests other than clinical information provided by the patient and findings of neurological examination. One of the best hopes for improving diagnosis is to develop a reliable test for identifying changes in the severity of the disease, which would also allow drug companies to test potential drugs at higher efficacy.

The new assay was developed by a research team at the Faculty of Medicine of the Hebrew University of Jerusalem (Jerusalem, Israel) under the supervision of Dr. Ronit Sharon. First author and PhD student Suaad Abd-Elhadi was awarded Hebrew U’s Kaye Innovation Award for 2017 in recognition of her especially important role in developing the assay.

The assay detects the protein alpha-synuclein, a potentially important PD biomarker as it is closely associated with tissues where PD can be detected and with the neurological pathways along which the disease progresses, causing its characteristic symptoms. However, ELISA capture of alpha-synuclein using antibodies raises a concern regarding efficacy for the intracellular, unfolded pool of alpha-synuclein. An alternative to antibodies is capture by membrane lipids based on utilizing the biochemical property of alpha-synuclein to specifically bind membrane lipids and to acquire a characteristic structure following binding.

They determined alpha-synuclein levels in human samples using immobilized lipids for alpha-synuclein capture. Lipids used consisted of phosphatidyl inositol (PI), phosphatidyl serine (PS), and phosphatidyl ethanolamine (PE). Addition of mono-sialoganglioside to the immobilized lipids improved the system. Following capture, the lipid-bound alpha-synuclein was detected using an anti- alpha-synuclein antibody.

The development of a simple and highly sensitive diagnostic tool that can detect PD biomarkers could lead to a minimally invasive and cost-effective way to improve the lives of Parkinson’s patients. Toward this end, the researchers have recently demonstrated a proof-of-concept to the high potential of their lipid-ELISA assay in differentiating healthy and Parkinson’s affected subjects. They are now in the process of analyzing a large cohort as part of a clinical study, including patients with moderate and severe PD. The Hebrew University has signed an agreement with Integra Holdings for further development.

The related study, Abd-Elhadi S by et al, was published November 2016 in the journal Analytical and Bioanalytical Chemistry.

Related Links:
Hebrew University of Jerusalem

New
Gold Member
Veterinary Hematology Analyzer
Exigo H400
Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
DNA Extraction Kit
Ron’s Gel Extraction Mini Kit
New
Treponema Pallidum Test
ZEUS IFA Fluorescent Treponemal Antibody-Absorption (FTA-ABS) Test System

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.