We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Computational Tool Predicts Immunotherapy Outcomes for Metastatic Breast Cancer Patients

By LabMedica International staff writers
Posted on 31 Oct 2024
Print article
Image: The new method assesses which patients with metastatic triple-negative breast cancer could benefit from immunotherapy (Photo courtesy of Theinmozhi Arulraj and Aleksander Popel)
Image: The new method assesses which patients with metastatic triple-negative breast cancer could benefit from immunotherapy (Photo courtesy of Theinmozhi Arulraj and Aleksander Popel)

Immunotherapy aims to enhance the body’s immune response to target cancer cells, but not all patients experience a positive reaction to such treatments. Identifying which patients will benefit from immunotherapy is crucial, given the high toxicity associated with these therapies. Previous research has investigated whether the presence or absence of specific cells or the expression levels of various molecules within tumors can indicate a patient's likelihood of responding to immunotherapy. These molecules, known as predictive biomarkers, play an important role in selecting appropriate treatments for patients. Unfortunately, the accuracy of current predictive biomarkers in determining who will benefit from immunotherapy is limited. Additionally, conducting a large-scale evaluation of the characteristics that predict treatment response typically requires collecting tumor biopsies and blood samples from numerous patients and performing several assays, which presents significant challenges. Researchers have now leveraged computational tools to create a method for assessing which patients with metastatic triple-negative breast cancer may benefit from immunotherapy.

A team of computational scientists from the Johns Hopkins Kimmel Cancer Center (Baltimore, MD, USA) and the Johns Hopkins University School of Medicine (Baltimore, MD, USA) utilized a mathematical model called quantitative systems pharmacology to generate 1,635 virtual patients with metastatic triple-negative breast cancer and conducted treatment simulations using the immunotherapy drug pembrolizumab. They analyzed this data with advanced computational tools, including statistical and machine learning methods, to identify biomarkers that can accurately predict treatment responses. Their focus was on determining which patients would respond positively to treatment and which would not. By utilizing the partially synthetic data generated from the virtual clinical trial, the researchers evaluated the performance of 90 biomarkers both individually and in combinations of two, three, and four.

The findings revealed that pretreatment biomarkers, which are measurements taken from tumor biopsies or blood samples before treatment begins, had limited effectiveness in predicting treatment outcomes. Conversely, on-treatment biomarkers, which are collected after the initiation of treatment, proved to be more predictive of outcomes. Interestingly, the study found that some commonly utilized biomarker measurements, such as the expression of PD-L1 and the presence of lymphocytes within the tumor, performed better when assessed before treatment commenced rather than after it started. The researchers also investigated the accuracy of non-invasive measurements, such as immune cell counts in the blood, in forecasting treatment outcomes. According to their research published in the Proceedings of the National Academy of Sciences, some blood-based biomarkers were found to be comparably effective as tumor- or lymph node-based biomarkers in identifying patients likely to respond to treatment, suggesting a less invasive predictive approach.

Measurements of changes in tumor size, which can be easily obtained through CT scans, also showed potential as predictive indicators. Notably, these measurements taken within two weeks of initiating treatment demonstrated significant potential in identifying who would respond favorably if the treatment continued. To confirm their findings, the investigators conducted a virtual clinical trial selecting patients based on tumor diameter changes at the two-week mark after starting treatment. Remarkably, the simulated response rates more than doubled—from 11% to 25%. This underscores the potential of noninvasive biomarkers as alternatives when collecting tumor biopsy samples is not feasible. Overall, these new insights highlight the possibility of better patient selection for immunotherapy in metastatic breast cancer cases. The researchers anticipate that these findings will aid in designing future clinical studies, with the methodology potentially applicable to other cancer types.

“Predictive biomarkers are critical as we develop optimized strategies for triple-negative breast cancer, so as to avoid overtreatment in patients expected to do well without immunotherapy, and undertreatment in those who do not respond well to immunotherapy,” said study co-author Cesar Santa-Maria, M.D., an associate professor of oncology and breast medical oncologist at the Johns Hopkins Kimmel Cancer Center. “The complexities of the tumor microenvironment make biomarker discovery in the clinic challenging, but technologies leveraging in-silico [computer-based] modeling have the potential to capture such complexities and aid in patient selection for therapy.”

New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Gold Member
Hematology Analyzer
Swelab Lumi
New
Epstein-Barr Virus Test
ZEUS IFA Epstein-Barr Virus VCA IgG Test
New
Adenovirus Test
S3334E ADV Adenovirus Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The kit includes a container with a film, a compact optical device for attaching a smartphone, and a diagnostic app (Photo courtesy of KIST)

Urine-Based Bladder Cancer Diagnostic Kit to Reduce Need for Unnecessary Cystoscopies

Bladder cancer has a high cure rate of over 90% when detected early, but it is characterized by a recurrence rate of 70%, which requires continuous monitoring. Late-stage detection often results in major... Read more

Microbiology

view channel
Image: The QIAstat-Dx mini gastrointestinal panel has secured U.S. clearance to support year-round outpatient care (Photo courtesy of QIAGEN)

Syndromic Panel Provides Fast Answers for Outpatient Diagnosis of Gastrointestinal Conditions

Acute infectious gastroenteritis is a major cause of outpatient visits and hospitalizations in the U.S., with over 179 million cases estimated annually. Now, a new gastrointestinal panel designed to provide... Read more

Pathology

view channel
Image: The AI tool can search through data and histology images for much more precise information on cancer treatment effectiveness (Photo courtesy of Shutterstock)

AI Tool Analyzes 30K Data Points Per Medical Imaging Pixel in Cancer Search

A new artificial intelligence (AI)-powered tool can detect cell-level characteristics of cancer by analyzing data from very small tissue samples, some as tiny as 400 square micrometers, equivalent to the... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.