Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Events

10 Feb 2026 - 13 Feb 2026
17 Apr 2026 - 21 Apr 2026

Clostridium Strains Emit Volatile Organic Compounds in Characteristic Patterns

By LabMedica International staff writers
Posted on 16 Sep 2014
A novel method for determining Clostridium difficile ribotypes was based on mass spectroscopy analysis of volatile organic compounds (VOCs) produced by cultures of the diarrhea-causing bacteria.

Bacteria are classified in ribotypes following identification by ribotyping. More...
This process involves the fingerprinting of genomic DNA restriction fragments that contain all or part of the genes coding for 16S and 23S rRNA (ribosomal RNA). Digestion of the genes with a specific restriction enzyme generates fragments of different lengths. Gel electrophoresis analysis of the digested samples converts the fragments to lines on the gel. After blotting onto a matrix and probing, these lines form a unique pattern for each species and can be used to identify the origin of the DNA.

The various C. difficile ribotypes can cause variety symptoms that may need to be treated differently, so a test that could not only spot an infection but also determine which type of infection could lead to new treatment options.

In a recent study investigators at the University of Leicester (United Kingdom) used proton transfer reaction-time of flight-mass spectrometry to profile the VOCs produced by ten different C. difficile ribotypes. A total of 69 VOCs were identified, and combinations of these VOCs were found to be characteristic for each of the ribotypes. The VOC patterns, with the aid of a statistical analysis, were found to be useful in distinguishing different ribotypes.

A tentative assignment of different masses revealed that different ribotypes had markedly different emissions of methanol, p-cresol, dimethylamine, and a range sulfur compounds (ethylene sulfide, dimethylsulfide, and methyl thioacetate), which suggested that VOCs may serve as potential indicators of different metabolic pathways in virulent and less-virulent strains.

Senior author Dr. Paul Monks, professor of chemistry at the University of Leicester, said, "The rapid detection and identification of the bug Clostridium difficile is a primary concern in healthcare facilities. Rapid and accurate diagnoses are important to reduce C. difficile infections, as well as to provide the right treatment to infected patients. Delayed treatment and inappropriate antibiotics not only cause high morbidity and mortality, but also add costs to the healthcare system through lost bed days. Our approach may lead to a rapid clinical diagnostic test based on the VOCs released from fecal samples of patients infected with C. difficile. We do not underestimate the challenges in sampling and attributing C. difficile VOCs from fecal samples."

The study was published in the July 17, 2014, online edition of the journal Metabolomics.

Related Links:

University of Leicester



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.