We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Low-Cost Technique Detects Rotavirus

By LabMedica International staff writers
Posted on 22 Oct 2014
Print article
Image: A commercial Fabry–Pérot interferometer or etalon (Photo courtesy (United Scientific Supplies).
Image: A commercial Fabry–Pérot interferometer or etalon (Photo courtesy (United Scientific Supplies).
A new measurement method that increases the capacity to detect biological substances such as Rotavirus using optical biosensors has been discovered and patented.

The system will enhance the detection capacity of small concentrations of Rotavirus due to a new way to assess the biosensing response applied to an interferometric device allowing the detection of both the presence of the virus and its antibody.

Scientists at the Universidad Politécnica de Madrid (Spain) have focused their interests on label-free optical biosensors that do not require the presence of enzymes that fix either the substance to be detected or the marker responsible for any detectable physical phenomenon. These biosensors consist of smooth or micro-nano textured surfaces made with a polymer whose surface has been chemically treated to be similar to a bioreceptor.

Once the surface is coated by the bioreceptor, the biosensor is sensitive and selective to a determined type of biomolecule. When the substance to detect is recognized by a bioreceptor this substance produces a change on its optical response or transduction. This change is usually the movement of the maximum or minimum position of the interferometric pattern. An easy interferometric system based on two Fabry Perot interferometers was tested. One interferometer is used as a reference and the other one captures the substance or virus. Besides, different options of data are analyzed as an alternative to the traditional position shift of the endpoints. This system is easy to install in compact devices and can be used by non-expert users.

The investigators have proved that by using transduction as a variable, the variation of emitted overall intensity at intervals of specific wave length, the sensitivity and detection limit of these biosensors can be significantly improved. All this can reach truly competitive levels for such a simple design. By using the proposed device and reading procedure, they could detect the presence of anti-Rotavirus in blood plasma or anti-Rotavirus as water contaminant. Due to its low cost compared to other methods such as enzyme-linked immunosorbent assay, this technique constitutes a promising way to reduce child mortality in developing countries.

Related Links:

Universidad Politécnica de Madrid


Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centrifuge
Hematocrit Centrifuge 7511M4
New
Immunofluorescence Analyzer
MPQuanti

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.