We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Highly Sensitive Method Detects Malaria Parasites

By LabMedica International staff writers
Posted on 18 Mar 2015
Print article
Image: A gametocyte of Plasmodium falciparum in a thin blood smear and also seen are ring-form trophozoites and a red blood cell exhibiting basophilic stippling (Photo courtesy of Dr. Mae Melvin).
Image: A gametocyte of Plasmodium falciparum in a thin blood smear and also seen are ring-form trophozoites and a red blood cell exhibiting basophilic stippling (Photo courtesy of Dr. Mae Melvin).
A large proportion of asymptomatic malaria infections can only be identified by surveillance with molecular methods, yet these infections also contribute to onward transmission to mosquitoes.

New molecular assays that take advantage of genes with multiple copies in the parasite genome have been developed that can detect malaria parasites in human blood at very low levels and might be helpful in the campaign to eradicate malaria.

An international team of scientists led by those at the Swiss Tropical and Public Health Institute (Basel, Switzerland) compared three methods to detect malaria parasites in 498 samples randomly selected from a malaria survey in Tanzania: light microscopy, the current standard molecular assay, and the new assays. Two quantitative polymerase chain reaction (qPCR) assays were developed for ultra-sensitive detection of Plasmodium falciparum, targeting the high-copy telomere-associated repetitive element 2 (TARE-2, ~250 copies/genome) and the var gene acidic terminal sequence (varATS, 59 copies/genome).

Parasites were detected in 25% of samples by light microscopy, in 50% by the standard assay, and in 58% by the new assays. Compared to the new assays, the current molecular standard assay failed to identify 16% of infections, and at least 40% of those contained parasite gametocytes, the parasite stage that is transmitted when mosquitoes bite an infected person. Standard PCR is widely considered a molecular gold standard of malaria diagnosis complementing light microscopy, the traditional gold standard, yet these results suggest that this notion requires revision.

The new assays detect only the most common malaria parasite, P. falciparum, and while they can use very small blood samples collected in the field, the analysis itself needs to be done in a biomedical laboratory. Nonetheless, because low-density infections without disease symptoms are expected to become increasingly common as countries improve malaria control, ultra-sensitive tools such as these will likely be critical for malaria surveillance and for monitoring the progress of malaria control and elimination programs. The study was published on March 3, 2015, in the journal Public Library of Science Medicine.

Related Links:

Swiss Tropical and Public Health Institute


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
Aspergillus Test
REALQUALITY Aspergillus

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.