We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Microscopy and Molecular Assay Compared for Schistosomiasis Diagnosis

By LabMedica International staff writers
Posted on 12 Aug 2015
Print article
Image: Eggs of Schistosoma mansoni in an unstained wet mount (Photo courtesy of the CDC – [US] Centers of Disease Control and Prevention).
Image: Eggs of Schistosoma mansoni in an unstained wet mount (Photo courtesy of the CDC – [US] Centers of Disease Control and Prevention).
Image: The CFX96 Real-Time Polymerase Chain Reaction Detection System (Photo courtesy of Bio-Rad).
Image: The CFX96 Real-Time Polymerase Chain Reaction Detection System (Photo courtesy of Bio-Rad).
The current reference test for the detection of Schistosoma mansoni in endemic areas is stool microscopy based on one or more Kato-Katz stool smears, but this technique is highly observer-dependent and has suboptimal sensitivity.

Polymerase chain reaction (PCR), in a multiplex format, has the some advantages over microscopy, with greater flexibility as a multiplex PCR can detect all Schistosoma and other helminth species at the same time, and at any moment after the stool has been collected.

Scientists at Leiden University Medical Center (the Netherlands) led an international team to compare the performance of stool microscopy with the highly specific real-time polymerase chain reaction (RT-PCR) for the detection and quantification of parasite specific DNA. Microscopy and PCR were performed in a Senegalese community of 197 in an area with high S. mansoni transmission and co-occurrence of S. haematobium, and in 760 Kenyan schoolchildren from an area with comparatively low S. mansoni transmission.

In Senegal, two stool and two urine samples were collected from each participant on consecutive days. From each stool sample, a duplicate 25 mg Kato-Katz slide was prepared for quantitative detection of Schistosoma spp. eggs and qualitative diagnosis of soil transmitted helminths (STHs) Ascaris lumbricoides and Trichuris trichiura by microscopy. A Schistosoma multiplex real-time PCR (Schisto-PCR) was performed on DNA isolated from feces samples. This PCR targets the Schistosoma-specific internal transcriber-spacer-2 (ITS2) sequence of S. mansoni, S. haematobium, and S. intercalatum. Amplification, detection and data analysis were performed with the CFX96 Real-Time System version 1.1 (Bio-Rad; Hercules, CA, USA).

Despite the differences in Schistosoma endemicity the PCR performed very similarly in both areas; 13%–15% more infections were detected by PCR when comparing to microscopy of a single stool sample. Even when two to three stool samples were used for microscopy, PCR on one stool sample detected more infections, especially in people with light-intensity infections and in children from low-risk schools. The low prevalence of soil-transmitted helminthiasis in both populations was confirmed by an additional multiplex PCR.

The authors concluded that the ITS2-based PCR was more sensitive than standard microscopy in detecting Schistosoma spp. This would be particularly useful for S. mansoni detection in low transmission areas, and post-control settings, and as such improve schistosomiasis control programs, epidemiological research, and quality control of microscopy. Moreover, it can be complemented with other multiplex real-time PCRs to detect a wider range of helminths and thus enhance effectiveness of current integrated control and elimination strategies for neglected tropical diseases. The study was published on July 28, 2015, in the journal Public Library of Science Neglected Tropical Diseases.

Related Links:

Leiden University Medical Center 
Bio-Rad


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.