We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Aerobic Bacteria Rapidly Identified by MALDI-TOF Mass Spectrometry

By LabMedica International staff writers
Posted on 27 Jan 2016
Print article
Image: The Microflex LT bench-top MALDI-TOF mass spectrometer and BioTyper (Photo courtesy of Bruker Daltonics).
Image: The Microflex LT bench-top MALDI-TOF mass spectrometer and BioTyper (Photo courtesy of Bruker Daltonics).
Image: Schematics of the Bruker MALDI BioTyper Workflow (Photo courtesy of Professor Melissa B. Miller).
Image: Schematics of the Bruker MALDI BioTyper Workflow (Photo courtesy of Professor Melissa B. Miller).
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a diagnostic tool for the identification of organisms routinely found in the microbiology laboratory.

MALDI-TOF MS has been proven to be a rapid and cost-effective diagnostic method for routine use in the clinical microbiology laboratory and MALDI-TOF MS technology uses ionizing laser for structural elements of the isolate to generate isolate-derived spectra, which is then compared to a reference database.

Scientists at the Children's Hospital Los Angeles (CA, USA) and their colleague at the Keck School of Medicine (Los Angeles, CA, USA) used isolates previously recovered by routine culture and workup from clinical specimens were cultured to appropriate media, identified directly by MALDI-TOF MS, and compared to results from various biochemical identification methods. A total of 996 aerobic Gram-positive and Gram-negative organism isolates were included in the study.

All MALDI-TOF MS testing was performed in duplicate with the same swab spotted onto two spots on the target plate, one spot representing a “heavy” inoculum and the second spot representing a “light” inoculum. Acquisition and analysis of mass spectra was performed using the Microflex LT mass spectrometer (Bruker Daltonics; Fremont, CA, USA). For media studies, 84 Gram-negative bacteria were cultured on blood agar, chocolate agar, and MacConkey agar; 74 Gram-positive bacteria were cultured on blood agar, chocolate agar, and colistin nalidixic acid (CNA) agar. For temperature and stability studies, four Gram-negative bacteria and four Gram-positive bacteria were cultured onto blood agar. Results of MALDI-TOF MS were compared to routine methods performed in the microbiology laboratory. All discordant identifications were confirmed by additional biochemical or 16S rRNA sequencing.

In MALDI-TOF MS data interpretation, a score of equal to or greater than 2.0 is equivocal to reliable species-level identification, a score of 1.7–1.99 is considered reliable to the genus level and a score of less than 1.7 is considered unreliable for bacteria identification. Using the direct-smear method, 99.5% and 98.0% of aerobic Gram-negative and Gram-positive bacteria, respectively, were identified to the genus level. At a score of equal to or greater than 1.9, 97.6% Gram-negative organisms and 94.6% Gram-positive organisms were correctly identified to the species level by direct-smear method. Only 1.1% of isolates required further reflex to direct-plate extraction. The direct-smear method proved to be robust, as various growth temperatures, media, culture age, and different operators had no notable impact on the bacterial identification rate.

The authors concluded that the direct-smear method was accurate and effective in streamlining the workflow of Gram-positive and Gram-negative bacterial identification in our clinical laboratory. For simplicity, they recommend using the direct-smear method for the majority of specimens commonly found in the clinical laboratory and an optimized spectral score cutoff of equal to or greater than 1.9 for enhanced species-level identification rates. The study was first published on December 14, 2015, in the Journal of Clinical Laboratory Analysis.

Related Links:

Children's Hospital Los Angeles 
Keck School of Medicine 
Bruker Daltonics 


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Automated Blood Typing System
IH-500 NEXT
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.