We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Automated Microscopy Compared for Routine Malaria Diagnosis

By LabMedica International staff writers
Posted on 10 Oct 2018
Print article
Image: The Autoscope uses deep-learning software to quantify the malaria parasites in a sample (Photo courtesy of Intellectual Ventures).
Image: The Autoscope uses deep-learning software to quantify the malaria parasites in a sample (Photo courtesy of Intellectual Ventures).
Microscopic examination of Giemsa-stained blood films remains a major form of diagnosis in malaria case management. However, as with other visualization-based diagnoses, accuracy depends on individual technician performance, making standardization difficult and reliability poor.

Automated image recognition based on machine-learning, utilizing convolutional neural networks, offers potential to overcome these drawbacks. The application of digital image recognition to malaria microscopy, using artificial intelligence algorithms to replace or supplement the human factor in blood film interpretation, have been attempted, usually on thin films.

A team of scientists collaborating with Intellectual Ventures (Bellevue, WA, USA) conducted a cross-sectional, observational trial was conducted at two peripheral primary health facilities in Peru. They enrolled 700 participants whose age was between 5 and 75 years, and had a history of fever in the last three days or elevated temperature on admission. A finger prick blood sample was taken to create blood films for microscopy diagnosis, and additional drops of blood were spotted onto filter paper for subsequent quantitative polymerase chain reaction (qPCR) analysis. A prototype digital microscope device employing an algorithm based on machine-learning, the Autoscope, was assessed for its potential in malaria microscopy.

The investigators reported that at one clinic, sensitivity of Autoscope for diagnosing malaria was 72% and specificity was 85%. Microscopy performance was similar to Autoscope, with sensitivity 68% and specificity 100%. At one clinic, 85% of prepared slides had a minimum of 600 white blood cells (WBCs) imaged, thus meeting Autoscope’s design assumptions. At the second clinic, the sensitivity of Autoscope was 52% and specificity was 70%. Microscopy performance at this second clinic was 42% and specificity was 97%. Only 39% of slides from this clinic met Autoscope’s design assumptions regarding WBCs imaged.

The authors concluded that Autoscope’s diagnostic performance was on par with routine microscopy when slides had adequate blood volume to meet its design assumptions, as represented by results from one clinic. Autoscope’s diagnostic performance was poorer than routine microscopy on slides from the other clinic, which generated slides with lower blood volumes. The study was published on September 25, 2018, in the Malaria Journal.

Related Links:
Intellectual Ventures

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.