We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Paper-Based Technology Enables Malaria Detection

By LabMedica International staff writers
Posted on 21 Mar 2019
Print article
Image: A paper-based microfluidic device enables multiplex LAMP-based detection of malaria in blood (Photo courtesy of University of Glasgow).
Image: A paper-based microfluidic device enables multiplex LAMP-based detection of malaria in blood (Photo courtesy of University of Glasgow).
Populations living in remote rural communities would benefit from rapid, highly sensitive molecular, DNA-based diagnostics to inform the correct and timely treatment of infectious diseases.

Such information is also becoming increasingly relevant in global efforts for disease elimination, where the testing of asymptomatic patients is now seen as being important for the identification of disease reservoirs. However, healthcare workers face practical and logistical problems in the implementation of such tests, which often involve complex instrumentation and centralized laboratories.

An international team of scientists led by the University of Glasgow (Glasgow, UK) developed a test that consists of origami paper-based microfluidic sample preparation using hot wax printing to form channels that either repel or attract blood moving through the structure by capillary force prior to detecting DNA that is specific to malaria. Almost all the cost for the platform in its current form is for the freeze-dried enzymes and reagents that are used to trigger an isothermal amplification event that makes the device sensitive enough to differentiate between disease pathogens, even when they are present at such low abundance that the individual is asymptomatic.

The investigators evaluated the performance of the device in 67 children age six to 12 in primary schools in districts in Uganda. They compared the effectiveness of the device against two standard field-based techniques, rapid lateral flow immunoassay diagnostic testing and light microscopy, and against a laboratory-based, real-time polymerase chain reaction (RT-PCR) assay conducted retrospectively. The test enabled the diagnosis of malaria species in whole blood.

The microfluidic device proved to be highly sensitive and specific, detecting malaria in over 98% of infected individuals in a double-blind, first-in-human study. The analytical sensitivity of the Plasmodium pan assay, which detects several Plasmodium species (including P. falciparum, P. malariae, P. vivax, and P. ovale), was 105 IU/mL after 45 minutes of amplification. The P. falciparum assay detected this species alone with a similar level of sensitivity as the Plasmodium pan assay. The new method was more sensitive than other field-based, benchmark techniques, including optical microscopy and rapid immunoassay diagnostic tests, both performed by an experienced local healthcare team and which detected malaria in 86% and 83% of cases, respectively.

The authors concluded that their results demonstrated that paper-based microfluidic devices can deliver precision diagnostics for malaria in low-resource, underserved settings with a sensitivity that is higher than that of the current malaria diagnostic tests used in the field (such as microscopy and RDTs) and with performance that is similar to that of a laboratory-based real-time PCR test. The study was published on February 19, 2019, in the journal Proceedings of the National Academy of the Sciences.

Related Links:
University of Glasgow

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.