We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Abbott Diagnostics

Abbott Diagnostics provides medical diagnostic instruments, tests, automation and informatics solutions, including cl... read more Featured Products: More products

Download Mobile App




Diagnosis and Monitoring of Patients with Hepatitis C Virus

By LabMedica International staff writers
Posted on 11 Dec 2019
Print article
Image: The ARCHITECT Anti-HCV assay is a fully automated high throughput chemiluminescent microparticle immunoassay (CMIA) for the detection of antibodies to structural and nonstructural proteins of the hepatitis C virus (HCV) (Photo courtesy of Abbot Diagnostics)
Image: The ARCHITECT Anti-HCV assay is a fully automated high throughput chemiluminescent microparticle immunoassay (CMIA) for the detection of antibodies to structural and nonstructural proteins of the hepatitis C virus (HCV) (Photo courtesy of Abbot Diagnostics)
The global prevalence of people with hepatitis C virus (HCV) antibodies (anti-HCV-positive) is estimated to be 115 million, and 80 million of them have an active infection (anti-HCV-positive and HCV-RNA-positive).

Most HCV-infected individuals remain asymptomatic for decades and only 25% of them achieve spontaneous viral clearance, while 75% develop chronic infection. Around 10%–20% of chronically infected patients develop liver cirrhosis or hepatocellular carcinoma and despite improvements in diagnosis and screening, the morbidity and mortality due to chronic HCV infection remain high.

Medical microbiologists at the Complejo Hospitalario Navarra (Pamplona, Spain) and their colleagues carried out a prospective study included a sample of patients attending a regional reference hospital in Spain between September 2016 and December 2017, for whom viral load (VL) quantification was required. For these patients, HCV core antigen (HCV-cAg) determination was performed in parallel. The team tested plasma or serum samples from three patient groups: new diagnosis, treatment monitoring, and treatment failure. The treatment monitoring group was tested at the beginning of treatment, at four weeks post-initiation, at the end of treatment, and at 12 weeks post-treatment completion.

VL testing was performed by RT-PCR using the Cobas 6800 system (Roche Diagnostics, Mannheim, Germany), with a linear range of between 15 and 108 IU/mL. The detection and quantification of HCV-cAg was performed by chemiluminescence immunoassay (CLIA) in an Architect system (Architect HCV core antigen; Abbott Diagnostics, Wiesbaden, Germany), with a linear range of between 0 and 20,000 fmol/L. For the detection of anti-HCV antibodies, the Architect (Architect HCV anti-Ab) and Liaison (DiaSorin, Saluggia, Italy) systems were used, and/or confirmed with INNO-LIA (Innogenetics, Fujirebio, Gent, Belgium). Viral genotype and subtype data were determined by reverse hybridization assay Versant HCV Genotype 2.0 (LiPA; Siemens Healthcare Diagnostics, Tarrytown, NY, USA).

The scientists reported that a total of 303 samples from 124 patients were analyzed and there was excellent correlation was seen between HCV-cAg and HCV-RNA. The optimal cut-off value was 3 fmol/L in the receiver operating characteristics curve analysis, and the area under the curve was 0.987 (95% confidence interval 0.972–1.000). HCV-cAg sensitivity and specificity were 97% and 95%, respectively. Most diverging results were observed in the treatment follow-up group.

The authors concluded that the hepatitis C virus core antigen demonstrated good sensitivity and specificity as a marker for the detection of active HCV infection in the diagnosis of new cases, for the detection of antiviral therapeutic failures, and for monitoring of the antiviral treatment. The study was published in the December, 2019 issue of the International Journal of Infectious Diseases.

Related Links:
Complejo Hospitalario Navarra
Roche Diagnostics
Abbott Diagnostics
DiaSorin
Fujirebio
Siemens Healthcare Diagnostics


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.