We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

MACHEREY-NAGEL

MACHEREY-NAGEL manufactures pH papers, medical diagnostic test strips, and other such related paper products for rapi... read more Featured Products: More products

Download Mobile App




Gut Microbiome Dysbiosis Linked to COVID-19

By LabMedica International staff writers
Posted on 07 Nov 2022
Print article
Image: The NucleoSpin Soil Kit for isolating DNA from stools (Photo courtesy of Macherey-Nagel)
Image: The NucleoSpin Soil Kit for isolating DNA from stools (Photo courtesy of Macherey-Nagel)

Previous reports have demonstrated that severe COVID-19 is frequently associated with specific inflammatory immune phenotypes, lymphopenia, and a generally disproportionate immune response leading to systemic organ failure.

Complex gut microbiota ecosystems can prevent the invasion of potentially pathogenic bacteria. Conversely, when the gut microbiota incurs damage, such as through antibiotics treatment, competitive exclusion of pathogens is weakened and potentially dangerous blooms of antibiotic-resistant bacterial strains can occur.

Medical Microbiologists at the New York University Grossman School of Medicine (New York, NY, USA) and their colleagues demonstrated that SARS-CoV-2 infection induces gut microbiome dysbiosis in mice, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. They then they analyzed the bacterial composition of stool samples from 96 adults hospitalized with COVID-19 in 2020.

For bacterial DNA extraction 700 µL of SL1 lysis buffer (NucleoSpin Soil kit, Macherey-Nagel, Allentown, PA, USA) was added to the stool samples and tubes were heated at 95 °C for two hours to inactivate SARS-CoV-2. DNA concentration was assessed using a NanoDrop spectrophotometer. Human samples were prepared using KAPA HiFi Polymerase to amplify the V4 region of the 16 S rRNA gene. Libraries were sequenced on a MiSeq (Illumina, San Diego, CA, USA) using paired-end 2 × 250 reads and the MiSeq Reagent Kitv2.

The investigators observed an increase in populations of several microbes known to include antibiotic-resistant species. An analysis of stool samples paired with blood cultures found that antibiotic-resistant bacteria in the gut migrated to the bloodstream in 20% of patients. This migration could be due to a combination of the immune-compromising effects of the viral infection and the antibiotic-driven depletion of commensal gut microbes. The team reported that members of the phyla Firmicutes and Bacteroidetes represented the most abundant bacteria, followed by Proteobacteria.

The authors concluded that their findings support a scenario in which gut-to-blood translocation of microorganisms following microbiome dysbiosis leads to dangerous bloodstream infection during COVID-19, a complication seen in other immunocompromised patients, including patients with cancer, acute respiratory distress syndrome, and in ICU patients receiving probiotics. The study was published November 1, 2022 in the journal Nature Communications.

Related Links:
New York University Grossman School of Medicine 
Macherey-Nagel 
Illumina 

New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Automated Blood Typing System
IH-500 NEXT
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.