We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Fast, Cheap, and Easy Testing Method Could Become a Game-Changer in Antibiotic Sensitivity Testing

By LabMedica International staff writers
Posted on 26 Apr 2023
Print article
	Image: Testing antibiotic resistance with a fast, cheap, and easy method (Photo courtesy of EPFL)
Image: Testing antibiotic resistance with a fast, cheap, and easy method (Photo courtesy of EPFL)

Antibiotic resistance, which has become a critical global public health issue, occurs when bacteria evolve to withstand the drugs designed to eliminate them. Antibiotic sensitivity testing (AST) typically involves culture or genetic methods to determine bacterial resistance. Conventional ASTs can take up to 24 hours or longer for slow-growing bacteria, a critical period in clinical settings. Although faster ASTs have been developed, they often require complex and costly equipment. Researchers have now created a rapid, affordable, and accessible method based on optical microscopy that can perform AST at the single-cell level without needing to attach or label bacteria. The technique utilizes a standard optical microscope, a camera or mobile phone, and specialized software.

The new technique developed by researchers at EPFL (Lausanne, Switzerland) and Vrije Universiteit Brussel (Brussels, Belgium) is called optical nanomotion detection (ONMD) and monitors the nanoscale vibrations of individual bacteria before and during antibiotic exposure. Monitoring is performed using a basic optical microscope and a video camera or mobile phone. ONMD observes the microscopic oscillations (nanomotion) of bacterial cells, which signify living organisms and serve as a "signature of life." Nanomotion persists as long as the organism is alive, ceasing immediately upon death. In ONMD, bacterial nanomotion is captured in a video where individual cell movements are monitored with sub-pixel resolution.

Researchers successfully applied ONMD to detect the sensitivity of various bacteria to antibiotics, determining the sensitivities of Escherichia coli, Staphylococcus aureus, Lactobacillus rhamnosus, and Mycobacterium smegmatis (a non-pathogenic bacterial model for tuberculosis) sensitivities to antibiotics like ampicillin, streptomycin, doxycycline, and vancomycin in under two hours. ONMD not only tracks bacteria's life-death transitions upon antibiotic exposure but also reveals changes in bacterial metabolism due to nutrient availability. Tests demonstrated that ONMD can quickly and simply evaluate bacterial sensitivity or resistance to antibiotics by monitoring cellular oscillations. The researchers believe that the method's simplicity and effectiveness make it a game-changer in AST, with far-reaching implications for clinical and research applications, as it can be applied to a wide variety of bacteria.

“We have developed a technique in our laboratories that allows us to obtain an antibiogram within 2-4 hours – instead of the current 24 hours for the most common germs and one month for tuberculosis,” said Dr. Sandor Kasas at EPFL.

“Our technique is not only faster but also simpler and much cheaper than all those existing now,” added Professor Ronnie Willaert at Vrije Universiteit Brussel.

Related links:
EPFL
Vrije Universiteit Brussel

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Echinococcus Granulosus Assay
Echinococcus Granulosus IgG ELISA
New
RNA/DNA Extraction Instrument
QIAcube Connect Instrument

Print article

Channels

Pathology

view channel
Image: The technique predicts how well some breast cancer patients will respond to chemotherapy (Photo courtesy of Shutterstock)

New Technique Predicts Tumor’s Responsiveness to Breast Cancer Treatment

Breast cancer is the most common cancer among women worldwide, with 2.3 million new cases diagnosed each year. In the era of personalized medicine, targeted therapies for different types of breast cancer... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.