We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Class of Bloodstream Infection Diagnostics to Enable Culture-Free, Same-Day Organism Identification

By LabMedica International staff writers
Posted on 21 Nov 2023
Print article
Image: Keynome ID is a proprietary algorithm that classifies the bacterial species present in a sample (Photo courtesy of Day Zero Diagnostics)
Image: Keynome ID is a proprietary algorithm that classifies the bacterial species present in a sample (Photo courtesy of Day Zero Diagnostics)

The World Health Organization reports that sepsis-related complications lead to 11 million deaths annually, making up a fifth of all global deaths. Sepsis, a severe infection, demands prompt and effective treatment as mortality risks escalate with each passing hour. Traditional culture-based diagnostic methods, which take days to identify pathogens and determine antimicrobial susceptibility, contribute to either excessive or insufficient treatment, particularly when antibiotic-resistant organisms are involved. This situation underscores the urgent need for rapid diagnostic technologies capable of identifying pathogens and providing antimicrobial susceptibility results within hours, thus guiding effective therapy.

Oxford Nanopore (Oxford, UK) and Day Zero Diagnostics (Boston, MA, USA) have entered into a collaboration to develop a comprehensive diagnostic solution for bloodstream infections, a major cause of sepsis. This collaboration will seek to develop a diagnostic system that offers same-day pathogen identification and genomic-based antibiotic susceptibility profiles without the need for blood cultures. Both companies aim to streamline this system for clinical environments, such as hospitals, and plan to pursue regulatory approvals, including clearance from the FDA, in the future.

This innovative diagnostic system will combine Day Zero Diagnostics’ advanced sample preparation technology, which highly enriches samples, with its AI-powered Keynome technology. Keynome is adept at identifying microbes and determining antibiotic susceptibility. This system will be paired with sequencing data from Oxford Nanopore's PromethION 2 Solo, a high-throughput, compact sequencing device. The partnership is focused on creating an automated workflow for sample processing and sequencing that is tailored to the operational demands of clinical hospital laboratories. The PromethION 2 Solo platform from Oxford Nanopore, recognized for its real-time capabilities, scalability, and improved accuracy in single-nucleotide sequencing, is an ideal fit for the rapid and cost-efficient identification of pathogens directly from clinical samples.

"We are pleased to launch this collaboration with Oxford Nanopore that integrates nanopore sequencing innovations with Day Zero Diagnostics' platform technologies to develop a first-of-its kind diagnostic solution for sepsis," said Jong Lee, CEO and co-founder of Day Zero Diagnostics. "Culture free, same day, organism identification and antimicrobial susceptibility profiling directly from native samples will be a game changer for infectious disease diagnostics, directly enabling early, targeted life-saving treatment for patients."

"We are excited to partner with Day Zero Diagnostics to bring the benefits of nanopore sequencing to fight bloodstream infections," said Gordon Sanghera, CEO of Oxford Nanopore Technologies. "Our hope is that the rapid results, high accuracy and accessibility of the Oxford Nanopore system, combined with DZD's expertise and workflow, will make it possible for more people to access a solution that's fast and effective in the fight against bloodstream infections."

Related Links:
Oxford Nanopore
Day Zero Diagnostics

New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
New
hCG Urine Test
QuickVue hCG Urine Test
New
Echinococcus Granulosus Assay
Echinococcus Granulosus IgG ELISA

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.