We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Blood Analysis Predicts Sepsis and Organ Failure in Children

By LabMedica International staff writers
Posted on 27 Mar 2024
Print article
Image: The method predicts if a child is likely to develop sepsis and go into organ failure (Photo courtesy of 123RF)
Image: The method predicts if a child is likely to develop sepsis and go into organ failure (Photo courtesy of 123RF)

Sepsis poses a grave risk in which a severe immune reaction to infection leads to organ damage. Identifying sepsis in children is complex since the symptoms mirror those of many pediatric illnesses. Presently, if sepsis is suspected, medical practitioners administer antibiotics, increase fluids, and intensify monitoring for the child, leading to some receiving unneeded treatments. Now, a new technique developed by researchers can predict the likelihood of a child developing sepsis and succumbing to organ failure.

The research by investigators at the University of Queensland (Brisbane, Australia) involved more than 900 critically ill children in the emergency departments and intensive care units across four hospitals. Blood samples collected during the acute stage of their infection were examined for gene activation or suppression. This analysis allowed the researchers to identify gene expression patterns that could predict the child's risk of organ failure within the next 24 hours, as well as whether the infection was bacterial, viral, or a non-infectious inflammatory condition. Early detection is crucial for effective sepsis management, making this discovery potentially valuable for future clinical practice, although further investigation is necessary before it can guide preemptive actions by clinicians.

“Our next step will be to transfer what we have discovered to a point-of-care platform, which means we can potentially generate the results from a blood test within an hour,” said Professor Luregn Schlapbach from UQ’s Child Health Research Centre.

Related Links:
University of Queensland

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Salmonella Infection Rapid Test
HumaTex Salmonella
New
Human Cytomegalovirus Test
HCMV Real Time PCR Kit

Print article

Channels

Immunology

view channel
Image: Example image of the high-throughput microscopy method used in the study, showing immune cells stained with different fluorescence markers (Photo courtesy of Felix Kartnig/CeMM, MedUni Vienna)

Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies

Rheumatoid arthritis is the most common inflammatory joint disorder, with women three times as likely to suffer from the condition as men. Treatment advances made over the past decades have led to the... Read more

Pathology

view channel
Image: Lunit SCOPE HER2 is an AI-powered solution designed to detect HER2 expression profile (Photo courtesy of Lunit)

AI-Powered Pathology Solutions Accurately Predict Outcomes for HER2-Targeted Therapy in Metastatic CRC

A new study has highlighted how artificial intelligence (AI)-powered analysis of HER2 and the tumor microenvironment (TME) can improve patient stratification and predict clinical outcomes more effectively.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.