We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




DNA Code Unraveled for Rare Neurologic Disease

By LabMedica International staff writers
Posted on 04 Jul 2018
Print article
Image: Neuromyelitis optica (NMO) is an autoimmune disease and a potentially fatal disease in which the immune system attacks cells in the optic nerve and spinal cord. Aquaporin-4–immunoglobulin G (AQP4-IgG) is the specific biomarker for NMO spectrum disorders and most accurately diagnosed using a cell-based blood test (Photo courtesy of Mayo Clinic Laboratories).
Image: Neuromyelitis optica (NMO) is an autoimmune disease and a potentially fatal disease in which the immune system attacks cells in the optic nerve and spinal cord. Aquaporin-4–immunoglobulin G (AQP4-IgG) is the specific biomarker for NMO spectrum disorders and most accurately diagnosed using a cell-based blood test (Photo courtesy of Mayo Clinic Laboratories).
Neuromyelitis optica (NMO) is a potentially fatal disease in which the immune system attacks cells in the optic nerve and spinal cord, leaving some patients blind and/or paralyzed.

Patients can recover most of their function through medications and physical rehabilitation, though many are misdiagnosed with multiple sclerosis and face a higher risk of relapse and permanent damage due to lack of proper therapy.

A team of scientists from various institution and led by those at the Broad Institute (Cambridge, MA, USA) used genetic data from more than 1,200 participants which may help scientists improve treatments of neuromyelitis optica (NMO). The team meta-analyzed whole-genome sequences from 86 NMO cases and 460 controls with genome-wide single nucleotide polymorphism (SNP) array from 129 NMO cases and 784 controls to test for association with SNPs and copy number variation (total 215 NMO cases, 1,244 controls).

The investigators determined anti-aquaporin 4 (AQP4) serostatus via standardized assays, including enzyme-linked immunosorbent assay (ELISA) or cell-based assay (CBA). ELISA-based detection was obtained from one of the numerous laboratories that offer the test. CBAs were obtained from the Mayo Clinic Laboratories (Rochester, MN, USA). The team also obtained DNA from 144 NMO cases (78 NMO-immunoglobulin G (IgG)+ / 68 NMO-IgG−). Sequence reads were processed and aligned to a reference genome. Other techniques were used to support the study.

The team identified two independent signals in the major histocompatibility complex (MHC) region associated with NMO-IgG+, one of which may be explained by structural variation in the complement component four genes. Mendelian Randomization analysis revealed a significant causal effect of known systemic lupus erythematosus (SLE), but not multiple sclerosis (MS), risk variants in NMO-IgG+.

Benjamin Greenberg, MD, a neurologist and a senior author of the study, said, “This outcome shows that doing in-depth studies pays off, and more studies like this may be needed to find the problem behind other rare conditions. By taking a rare disease and doing more than just reading every third or fourth page of genetic code, we have modeled NMO in a much more accurate way.” The study was published on May 16, 2018, in the journal Nature Communications.

Related Links:
Broad Institute
Mayo Clinic Laboratories

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
ACTH Assay
ACTH ELISA
New
Vaginitis Test
Allplex Vaginitis Screening Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.